
Francesca L'Episcopo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8757062/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Implementation of Sample Pooling Procedure Using a Rapid SARS-CoV-2 Diagnostic Real-Time PCR Test Performed Prior to Hospital Admission of People with Intellectual Disabilities. International Journal of Environmental Research and Public Health, 2021, 18, 9317.	2.6	5
2	Extracellular Vesicles as Nanotherapeutics for Parkinson's Disease. Biomolecules, 2020, 10, 1327.	4.0	19
3	Glia-Derived Extracellular Vesicles in Parkinson's Disease. Journal of Clinical Medicine, 2020, 9, 1941.	2.4	18
4	Boosting Antioxidant Self-defenses by Grafting Astrocytes Rejuvenates the Aged Microenvironment and Mitigates Nigrostriatal Toxicity in Parkinsonian Brain via an Nrf2-Driven Wnt/β-Catenin Prosurvival Axis. Frontiers in Aging Neuroscience, 2020, 12, 24.	3.4	23
5	Parkinson's disease, aging and adult neurogenesis: Wnt/β atenin signalling as the key to unlock the mystery of endogenous brain repair. Aging Cell, 2020, 19, e13101.	6.7	105
6	Possible implication of undescribed SMN1-SMN2 genotype in chronic EMC-pattern of SMA with transitory acute denervation. Journal of Musculoskeletal Neuronal Interactions, 2020, 20, 610-613.	0.1	0
7	Neural Stem Cell Grafts Promote Astroglia-Driven Neurorestoration in the Aged Parkinsonian Brain via Wnt/β-Catenin Signaling. Stem Cells, 2018, 36, 1179-1197.	3.2	49
8	Microglia Polarization, Gene-Environment Interactions and Wnt/β-Catenin Signaling: Emerging Roles of Glia-Neuron and Glia-Stem/Neuroprogenitor Crosstalk for Dopaminergic Neurorestoration in Aged Parkinsonian Brain. Frontiers in Aging Neuroscience, 2018, 10, 12.	3.4	71
9	microRNAs in Parkinson's Disease: From Pathogenesis to Novel Diagnostic and Therapeutic Approaches. International Journal of Molecular Sciences, 2017, 18, 2698.	4.1	170
10	GSK-3β-induced Tau pathology drives hippocampal neuronal cell death in Huntington's disease: involvement of astrocyte–neuron interactions. Cell Death and Disease, 2016, 7, e2206-e2206.	6.3	67
11	Targeting Wnt signaling at the neuroimmune interface for dopaminergic neuroprotection/repair in Parkinson's disease. Journal of Molecular Cell Biology, 2014, 6, 13-26.	3.3	73
12	Wnt/β-Catenin Signaling Is Required to Rescue Midbrain Dopaminergic Progenitors and Promote Neurorepair in Ageing Mouse Model of Parkinson's Disease. Stem Cells, 2014, 32, 2147-2163.	3.2	99
13	Aging-Induced <i>Nrf2-ARE</i> Pathway Disruption in the Subventricular Zone Drives Neurogenic Impairment in Parkinsonian Mice via <i>PI3K-Wnt/</i> β <i>Catenin</i> Dysregulation. Journal of Neuroscience, 2013, 33, 1462-1485.	3.6	90
14	Uncovering novel actors in astrocyte–neuron crosstalk in <scp>P</scp> arkinson's disease: the <scp>W</scp> nt/l²â€catenin signaling cascade as the common final pathway for neuroprotection and selfâ€repair. European Journal of Neuroscience, 2013, 37, 1550-1563.	2.6	81
15	Reactive Astrocytes Are Key Players in Nigrostriatal Dopaminergic Neurorepair in the Mptp Mouse Model of Parkinson's Disease: Focus on Endogenous Neurorestoration. Current Aging Science, 2013, 6, 45-55.	1.2	54
16	Plasticity of Subventricular Zone Neuroprogenitors in MPTP (1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine) Mouse Model of Parkinson's Disease Involves Cross Talk between Inflammatory and Wnt/Â-Catenin Signaling Pathways: Functional Consequences for Neuroprotection and Repair. Journal of Neuroscience, 2012, 32, 2062-2085.	3.6	123
17	Reactive astrocytes and Wnt/β-catenin signaling link nigrostriatal injury to repair in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Neurobiology of Disease, 2011, 41, 508-527.	4.4	177
18	A Wnt1 regulated Frizzled-1/β-Cateninsignaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: Therapeutical relevance for neuron survival and neuroprotection. Molecular Neurodegeneration, 2011, 6, 49.	10.8	179

#	Article	IF	CITATIONS
19	Switching the Microglial Harmful Phenotype Promotes Lifelong Restoration of Subtantia Nigra Dopaminergic Neurons from Inflammatory Neurodegeneration in Aged Mice. Rejuvenation Research, 2011, 14, 411-424.	1.8	45
20	Combining nitric oxide release with anti-inflammatory activity preserves nigrostriatal dopaminergic innervation and prevents motor impairment in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Journal of Neuroinflammation, 2010, 7, 83.	7.2	53
21	Glia as a Turning Point in the Therapeutic Strategy of Parkinsons Disease. CNS and Neurological Disorders - Drug Targets, 2010, 9, 349-372.	1.4	59
22	Loss of aromatase cytochrome P450 function as a risk factor for Parkinson's disease?. Brain Research Reviews, 2008, 57, 431-443.	9.0	53
23	Estrogen, neuroinflammation and neuroprotection in Parkinson's disease: Glia dictates resistance versus vulnerability to neurodegeneration. Neuroscience, 2006, 138, 869-878.	2.3	177
24	Hormones Are Key Actors in Gene X Environment Interactions Programming the Vulnerability to Parkinson's Disease: Glia as a Common Final Pathway. Annals of the New York Academy of Sciences, 2005, 1057, 296-318.	3.8	47
25	Glucocorticoid receptor–nitric oxide crosstalk and vulnerability to experimental parkinsonism: pivotal role for glia–neuron interactions. Brain Research Reviews, 2005, 48, 302-321.	9.0	56
26	Glucocorticoid receptor deficiency increases vulnerability of the nigrostriatal dopaminergic system: critical role of glial nitric oxide. FASEB Journal, 2004, 18, 164-166.	0.5	72
27	Bilirubin protects astrocytes from its own toxicity by inducing up-regulation and translocation of multidrug resistance-associated protein 1 (Mrp1). Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2470-2475.	7.1	148
28	The reproductive system at the neuroendocrine-immune interface: focus on LHRH, estrogens and growth factors in LHRH neuron–glial interactions. Domestic Animal Endocrinology, 2003, 25, 21-46.	1.6	11