Lichao Jia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8756304/publications.pdf

Version: 2024-02-01

		279798	434195
30	1,283	23	31
papers	citations	h-index	g-index
31	31	31	1899
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Activating a Semiconductor–Liquid Junction via Laserâ€Derived Dual Interfacial Layers for Boosted Photoelectrochemical Water Splitting. Advanced Materials, 2022, 34, e2201140.	21.0	34
2	Boosting the solar water oxidation performance of BiVO4 photoanode via non-stoichiometric ratio drived surface reconstruction. Journal of Power Sources, 2022, 528, 231242.	7.8	10
3	Boosting carrier dynamics of BiVO4 photoanode via heterostructuring with ultrathin BiOI nanosheets for enhanced solar water splitting. Journal of Materials Science and Technology, 2021, 79, 21-28.	10.7	18
4	Electrospun Bi-doped SnO2 porous nanosheets for highly sensitive nitric oxide detection. Journal of Hazardous Materials, 2021, 416, 126118.	12.4	34
5	C-doped LaFeO3 Porous Nanostructures for Highly Selective Detection of Formaldehyde. Sensors and Actuators B: Chemical, 2021, 347, 130550.	7.8	25
6	Gradient Ti-doping in hematite photoanodes for enhanced photoelectrochemical performance. Journal of Power Sources, 2020, 449, 227473.	7.8	34
7	Laser-generated BiVO4 colloidal particles with tailoring size and native oxygen defect for highly efficient gas sensing. Journal of Hazardous Materials, 2020, 392, 122471.	12.4	18
8	Surface defect passivation of Ta3N5 photoanode via pyridine grafting for enhanced photoelectrochemical performance. Journal of Chemical Physics, 2020, 153, 024705.	3.0	5
9	Hierarchical porous LaFeO3 nanostructure for efficient trace detection of formaldehyde. Sensors and Actuators B: Chemical, 2020, 313, 128022.	7.8	38
10	Mo doped BiVO4 gas sensor with high sensitivity and selectivity towards H2S. Chemical Engineering Journal, 2020, 395, 125144.	12.7	90
11	Porous CuBi ₂ O ₄ photocathodes with rationally engineered morphology and composition towards high-efficiency photoelectrochemical performance. Journal of Materials Chemistry A, 2019, 7, 21997-22004.	10.3	53
12	Ordered porous BiVO4 based gas sensors with high selectivity and fast-response towards H2S. Chemical Engineering Journal, 2019, 375, 121924.	12.7	50
13	Embedding laser generated nanocrystals in BiVO4 photoanode for efficient photoelectrochemical water splitting. Nature Communications, 2019, 10, 2609.	12.8	140
14	Facile synthesis of Ti ₄ O ₇ on hollow carbon spheres with enhanced polysulfide binding for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 10494-10504.	10.3	43
15	Boosting hematite photoelectrochemical water splitting by decoration of TiO2 at the grain boundaries. Chemical Engineering Journal, 2019, 368, 959-967.	12.7	54
16	Reconstruction of Solar Fuel Ultrathin Films via Periodically Microbending for Efficient Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 2018, 1, 6748-6757.	5.1	3
17	Fe ₂ O ₃ Porous Film with Single Grain Layer for Photoelectrochemical Water Oxidation: Reducing of Grain Boundary Effect. Advanced Materials Interfaces, 2016, 3, 1500434.	3.7	16
18	Sputtering Deposition of Ultra-thin \hat{l}_{\pm} -Fe2O3 Films for Solar Water Splitting. Journal of Materials Science and Technology, 2015, 31, 655-659.	10.7	32

#	Article	IF	CITATIONS
19	Highly Ordered Nanoporous Carbon Films with Tunable Pore Diameters and their Excellent Sensing Properties. Chemistry - A European Journal, 2015, 21, 697-703.	3.3	24
20	α-Fe ₂ O ₃ films for photoelectrochemical water oxidation – insights of key performance parameters. Journal of Materials Chemistry A, 2014, 2, 20196-20202.	10.3	45
21	Highly ordered macro-mesoporous carbon nitride film for selective detection of acidic/basic molecules. Chemical Communications, 2014, 50, 5976-5979.	4.1	61
22	Photomediated assembly of single crystalline silver spherical particles with enhanced electrochemical performance. Journal of Materials Chemistry A, 2013, 1, 692-698.	10.3	29
23	Size-related native defect engineering in high intensity ultrasonication of nanoparticles for photoelectrochemical water splitting. Energy and Environmental Science, 2013, 6, 799.	30.8	58
24	Fabrication of Self-Standing Silver Nanoplate Arrays by Seed-Decorated Electrochemical Route and Their Structure-Induced Properties. Journal of Nanomaterials, 2013, 2013, 1-7.	2.7	13
25	A facile photo-induced synthesis of COOH functionalized meso-macroporous carbon films and their excellent sensing capability for aromatic amines. Chemical Communications, 2012, 48, 9029.	4.1	24
26	Sizeâ€Tailored ZnO Submicrometer Spheres: Bottomâ€Up Construction, Sizeâ€Related Optical Extinction, and Selective Aniline Trapping. Advanced Materials, 2011, 23, 1865-1870.	21.0	119
27	Micro/Nanostructured Ordered Porous Films and Their Structurally Induced Control of the Gas Sensing Performances. Advanced Functional Materials, 2010, 20, 3765-3773.	14.9	83
28	Hetero-apertured Micro/Nanostructured Ordered Porous Array: Layer-by-Layered Construction and Structure-Induced Sensing Parameter Controllability. ACS Nano, 2009, 3, 2697-2705.	14.6	65
29	Layer-by-layer strategy for the general synthesis of 2D ordered micro/nanostructured porous arrays: structural, morphological and compositional controllability. Journal of Materials Chemistry, 2009, 19, 7301.	6.7	28
30	Polar-Field-Induced Double-Layer Nanostructured ZnO and Its Strong Violet Photoluminescence. Crystal Growth and Design, 2008, 8, 4367-4371.	3.0	36