
Christophe Délye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8755805/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lab meets field: Accelerated selection and field monitoring concur that non-target-site-based resistance evolves first in the dicotyledonous, allergenic weed Ambrosia artemisiifolia. Plant Science, 2022, 317, 111202.	3.6	2
2	A high diversity of mechanisms endows ALS-inhibiting herbicide resistance in the invasive common ragweed (Ambrosia artemisiifolia L.). Scientific Reports, 2021, 11, 19904.	3.3	11
3	Harnessing the power of nextâ€generation sequencing technologies to the purpose of highâ€throughput pesticide resistance diagnosis. Pest Management Science, 2020, 76, 543-552.	3.4	14
4	Adaptive introgression from maize has facilitated the establishment of teosinte as a noxious weed in Europe. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25618-25627.	7.1	54
5	Multiple resistance of <i>Papaver rhoeas</i> L. to 2,4â€D and acetolactate synthase inhibitors in four European countries. Weed Research, 2019, 59, 367-376.	1.7	11
6	High conservation of the transcriptional response to acetolactateâ€synthaseâ€inhibiting herbicides across plant species. Weed Research, 2018, 58, 2-7.	1.7	8
7	Transcriptional markers enable identification of rye-grass (Lolium sp.) plants with non-target-site-based resistance to herbicides inhibiting acetolactate-synthase. Plant Science, 2017, 257, 22-36.	3.6	42
8	Herbicide Safeners Decrease Sensitivity to Herbicides Inhibiting Acetolactate-Synthase and Likely Activate Non-Target-Site-Based Resistance Pathways in the Major Grass Weed Lolium sp. (Rye-Grass). Frontiers in Plant Science, 2017, 8, 1310.	3.6	27
9	New gSSR and EST-SSR markers reveal high genetic diversity in the invasive plant Ambrosia artemisiifolia L. and can be transferred to other invasive Ambrosia species. PLoS ONE, 2017, 12, e0176197.	2.5	23
10	Herbicide Resistance in Setaria. Plant Genetics and Genomics: Crops and Models, 2017, , 251-266.	0.3	1
11	Choosing the best cropping systems to target pleiotropic effects when managing singleâ€gene herbicide resistance in grass weeds. A blackgrass simulation study. Pest Management Science, 2016, 72, 1910-1925.	3.4	18
12	Genetic basis, evolutionary origin and spread of resistance to herbicides inhibiting acetolactate synthase in common groundsel (<i>Senecio vulgaris</i>). Pest Management Science, 2016, 72, 89-102.	3.4	19
13	Fitness cost due to herbicide resistance may trigger genetic background evolution. Evolution; International Journal of Organic Evolution, 2015, 69, 271-278.	2.3	35
14	Using nextâ€generation sequencing to detect mutations endowing resistance to pesticides: application to acetolactateâ€synthase (<scp>ALS</scp>)â€based resistance in barnyard grass, a polyploid grass weed. Pest Management Science, 2015, 71, 675-685.	3.4	14
15	RNA-Seq analysis of rye-grass transcriptomic response to an herbicide inhibiting acetolactate-synthase identifies transcripts linked to non-target-site-based resistance. Plant Molecular Biology, 2015, 87, 473-487.	3.9	115
16	Molecular Mechanisms of Herbicide Resistance. Weed Science, 2015, 63, 91-115.	1.5	73
17	Occurrence, genetic control and evolution of non-target-site based resistance to herbicides inhibiting acetolactate synthase (ALS) in the dicot weed Papaver rhoeas. Plant Science, 2015, 238, 158-169.	3.6	40
18	ALOMYbase, a resource to investigate non-target-site-based resistance to herbicides inhibiting acetolactate-synthase (ALS) in the major grass weed Alopecurus myosuroides (black-grass). BMC Genomics, 2015, 16, 590.	2.8	66

CHRISTOPHE DéLYE

#	Article	IF	CITATIONS
19	Unravelling the genetic bases of nonâ€ŧargetâ€siteâ€based resistance (NTSR) to herbicides: a major challenge for weed science in the forthcoming decade. Pest Management Science, 2013, 69, 176-187.	3.4	364
20	Deciphering the evolution of herbicide resistance in weeds. Trends in Genetics, 2013, 29, 649-658.	6.7	462
21	Isolation and Characterisation of 11 Polymorphic Microsatellite Markers in Papaver rhoeas L. (Corn) Tj ETQq1 1 0 Sciences, 2013, 14, 470-479.).784314 ı 4 . 1	rgBT /Overlo 11
22	A new insight into arable weed adaptive evolution: mutations endowing herbicide resistance also affect germination dynamics and seedling emergence. Annals of Botany, 2013, 111, 681-691.	2.9	72
23	Reference Genes to Study Herbicide Stress Response in Lolium sp.: Up-Regulation of P450 Genes in Plants Resistant to Acetolactate-Synthase Inhibitors. PLoS ONE, 2013, 8, e63576.	2.5	58
24	DNA Analysis of Herbarium Specimens of the Grass Weed Alopecurus myosuroides Reveals Herbicide Resistance Pre-Dated Herbicides. PLoS ONE, 2013, 8, e75117.	2.5	55
25	Validation of a set of reference genes to study response to herbicide stress in grasses. BMC Research Notes, 2012, 5, 18.	1.4	35
26	Evolution and diversity of the mechanisms endowing resistance to herbicides inhibiting acetolactate-synthase (ALS) in corn poppy (Papaver rhoeas L.). Plant Science, 2011, 180, 333-342.	3.6	62
27	Highâ€ŧhroughput microsatellite isolation through 454 GSâ€FLX Titanium pyrosequencing of enriched DNA libraries. Molecular Ecology Resources, 2011, 11, 638-644.	4.8	276
28	â€~Universal' PCR assays detecting mutations in acetyl oenzyme A carboxylase or acetolactate synthase that endow herbicide resistance in grass weeds. Weed Research, 2011, 51, 353-362.	1.7	54
29	Nonâ€targetâ€siteâ€based resistance should be the centre of attention for herbicide resistance research: <i>Alopecurus myosuroides</i> as an illustration. Weed Research, 2011, 51, 433-437.	1.7	87
30	Gene flow increases the initial frequency of herbicide resistance alleles in unselected Lolium rigidum populations. Agriculture, Ecosystems and Environment, 2011, 142, 403-409.	5.3	24
31	High gene flow promotes the genetic homogeneity of arable weed populations at the landscape level. Basic and Applied Ecology, 2010, 11, 504-512.	2.7	37
32	Prevalence of cross―or multiple resistance to the acetylâ€coenzyme A carboxylase inhibitors fenoxaprop, clodinafop and pinoxaden in blackâ€grass (<i>Alopecurus myosuroides</i> Huds.) in France. Pest Management Science, 2010, 66, 168-177.	3.4	120
33	Geographical variation in resistance to acetylâ€coenzyme A carboxylaseâ€inhibiting herbicides across the range of the arable weed <i>Alopecurus myosuroides</i> (blackâ€grass). New Phytologist, 2010, 186, 1005-1017.	7.3	103
34	Complex genetic control of non-target-site-based resistance to herbicides inhibiting acetyl-coenzyme A carboxylase and acetolactate-synthase in Alopecurus myosuroides Huds Plant Science, 2010, 178, 501-509.	3.6	88
35	Variation in the gene encoding acetolactateâ€synthase in <i>Lolium</i> species and proactive detection of mutant, herbicideâ€resistant alleles. Weed Research, 2009, 49, 326-336.	1.7	36
36	Fitness costs associated with three mutant acetylâ€coenzyme A carboxylase alleles endowing herbicide resistance in blackâ€grass <i>Alopecurus myosuroides</i> . Journal of Applied Ecology, 2008, 45, 939-947.	4.0	99

Christophe Délye

#	Article	IF	CITATIONS
37	Crossâ€resistance patterns to ACCaseâ€inhibiting herbicides conferred by mutant ACCase isoforms in <i>Alopecurus myosuroides</i> Huds. (blackâ€grass), reâ€examined at the recommended herbicide field rate. Pest Management Science, 2008, 64, 1179-1186.	3.4	76
38	A molecular assay for the proactive detection of target site-based resistance to herbicides inhibiting acetolactate synthase in Alopecurus myosuroides. Weed Research, 2008, 48, 97-101.	1.7	42
39	Genetic variation and population structure in blackâ€grass (<i>Alopecurus myosuroides</i> Huds.), a successful, herbicideâ€resistant, annual grass weed of winter cereal fields. Molecular Ecology, 2007, 16, 3161-3172.	3.9	67
40	Status of black grass (Alopecurus myosuroides) resistance to acetyl-coenzyme A carboxylase inhibitors in France. Weed Research, 2007, 47, 95-105.	1.7	66
41	Molecular evidence of biased inheritance of trifluralin herbicide resistance in foxtail millet. Plant Breeding, 2006, 125, 254-258.	1.9	9
42	Weed response to herbicides: regionalâ€scale distribution of herbicide resistance alleles in the grass weed Alopecurus myosuroides. New Phytologist, 2006, 171, 861-874.	7.3	72
43	A single polymerase chain reaction-based assay for simultaneous detection of two mutations conferring resistance to tubulin-binding herbicides in Setaria viridis. Weed Research, 2005, 45, 228-235.	1.7	9
44	'Universal' primers for PCR-sequencing of grass chloroplastic acetyl-CoA carboxylase domains involved in resistance to herbicides. Weed Research, 2005, 45, 323-330.	1.7	54
45	Molecular Bases for Sensitivity to Acetyl-Coenzyme A Carboxylase Inhibitors in Black-Grass. Plant Physiology, 2005, 137, 794-806.	4.8	176
46	Weed resistance to acetyl coenzyme A carboxylase inhibitors: an update. Weed Science, 2005, 53, 728-746.	1.5	241
47	Molecular Bases for Sensitivity to Tubulin-Binding Herbicides in Green Foxtail. Plant Physiology, 2004, 136, 3920-3932.	4.8	85
48	Multiple origins for black-grass(Alopecurus myosuroides Huds) target-site-based resistance to herbicides inhibiting acetyl-CoA carboxylase. Pest Management Science, 2004, 60, 35-41.	3.4	22
49	Nucleotide Variability at the Acetyl Coenzyme A Carboxylase Gene and the Signature of Herbicide Selection in the Grass Weed Alopecurus myosuroides (Huds.). Molecular Biology and Evolution, 2004, 21, 884-892.	8.9	39
50	Genetic Diversity and Pathogenic Variability Among Isolates of Colletotrichum Species from Strawberry. Phytopathology, 2003, 93, 219-228.	2.2	80
51	An Isoleucine Residue within the Carboxyl-Transferase Domain of Multidomain Acetyl-Coenzyme A Carboxylase Is a Major Determinant of Sensitivity to Aryloxyphenoxypropionate But Not to Cyclohexanedione Inhibitors. Plant Physiology, 2003, 132, 1716-1723.	4.8	122
52	SNP markers for black-grass (Alopecurus myosuroides Huds.) genotypes resistant to acetyl CoA-carboxylase inhibiting herbicides. Theoretical and Applied Genetics, 2002, 104, 1114-1120.	3.6	65
53	An isoleucine-leucine substitution in chloroplastic acetyl-CoA carboxylase from green foxtail (Setaria viridis L. Beauv.) is responsible for resistance to the cyclohexanedione herbicide sethoxydim. Planta, 2002, 214, 421-427.	3.2	106
54	PCR-based detection of resistance to acetyl-CoA carboxylase-inhibiting herbicides in black-grass (Alopecurus myosuroidesHuds) and ryegrass (Lolium rigidumGaud). Pest Management Science, 2002, 58, 474-478.	3.4	94

Christophe Délye

#	Article	IF	CITATIONS
55	PCR Assays That Identify the Grapevine Dieback Fungus Eutypa lata. Applied and Environmental Microbiology, 2000, 66, 4475-4480.	3.1	58
56	Nested Allele-Specific PCR Primers Distinguish Genetic Groups of <i>Uncinula necator</i> . Applied and Environmental Microbiology, 1999, 65, 3950-3954.	3.1	34
57	Rapid isolation of both double-stranded RNA and PCR-suitable DNA from the obligate biotrophic phytopathogenic fungus Uncinula necator using a commercially available reagent. Journal of Virological Methods, 1998, 74, 149-153.	2.1	8
58	Origin of primary infections of grape by Uncinula necator: RAPD analysis discriminates two biotypes. Mycological Research, 1998, 102, 283-288.	2.5	51
59	PCR cloning and detection of point mutations in the eburicol 14 a -demethylase (CYP51) gene from Erysiphe graminis f. sp. hordei , a "recalcitrant" fungus. Current Genetics, 1998, 34, 399-403.	1.7	125
60	RAPD Analysis Provides Insight into the Biology and Epidemiology of Uncinula necator. Phytopathology, 1997, 87, 670-677.	2.2	60
61	Cloning and sequence analysis of the eburicol 14î±-demethylase gene of the obligate biotrophic grape powdery mildew fungus. Gene, 1997, 195, 29-33.	2.2	31
62	New tools for studying epidemiology and resistance of grape powdery mildew to DMI fungicides. Pest Management Science, 1997, 51, 309-314.	0.4	17
63	A mutation in the 14 alpha-demethylase gene of Uncinula necator that correlates with resistance to a sterol biosynthesis inhibitor. Applied and Environmental Microbiology, 1997, 63, 2966-2970.	3.1	194
64	A RAPD Assay for Strain Typing of the Biotrophic Grape Powdery Mildew Fungus Uncinula necator Using DNA Extracted from the Mycelium. Experimental Mycology, 1995, 19, 234-237.	1.6	25