Christophe Délye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8755805/publications.pdf

Version: 2024-02-01

64 papers

4,644 citations

94433 37 h-index 64 g-index

65 all docs

65 docs citations

65 times ranked 2686 citing authors

#	Article	IF	Citations
1	Deciphering the evolution of herbicide resistance in weeds. Trends in Genetics, 2013, 29, 649-658.	6.7	462
2	Unravelling the genetic bases of nonâ€targetâ€siteâ€based resistance (NTSR) to herbicides: a major challenge for weed science in the forthcoming decade. Pest Management Science, 2013, 69, 176-187.	3.4	364
3	Highâ€throughput microsatellite isolation through 454 GSâ€FLX Titanium pyrosequencing of enriched DNA libraries. Molecular Ecology Resources, 2011, 11, 638-644.	4.8	276
4	Weed resistance to acetyl coenzyme A carboxylase inhibitors: an update. Weed Science, 2005, 53, 728-746.	1.5	241
5	A mutation in the 14 alpha-demethylase gene of Uncinula necator that correlates with resistance to a sterol biosynthesis inhibitor. Applied and Environmental Microbiology, 1997, 63, 2966-2970.	3.1	194
6	Molecular Bases for Sensitivity to Acetyl-Coenzyme A Carboxylase Inhibitors in Black-Grass. Plant Physiology, 2005, 137, 794-806.	4.8	176
7	PCR cloning and detection of point mutations in the eburicol 14 a -demethylase (CYP51) gene from Erysiphe graminis f. sp. hordei , a "recalcitrant" fungus. Current Genetics, 1998, 34, 399-403.	1.7	125
8	An Isoleucine Residue within the Carboxyl-Transferase Domain of Multidomain Acetyl-Coenzyme A Carboxylase Is a Major Determinant of Sensitivity to Aryloxyphenoxypropionate But Not to Cyclohexanedione Inhibitors. Plant Physiology, 2003, 132, 1716-1723.	4.8	122
9	Prevalence of cross―or multiple resistance to the acetylâ€coenzyme A carboxylase inhibitors fenoxaprop, clodinafop and pinoxaden in blackâ€grass (<i>Alopecurus myosuroides</i> Huds.) in France. Pest Management Science, 2010, 66, 168-177.	3.4	120
10	RNA-Seq analysis of rye-grass transcriptomic response to an herbicide inhibiting acetolactate-synthase identifies transcripts linked to non-target-site-based resistance. Plant Molecular Biology, 2015, 87, 473-487.	3.9	115
11	An isoleucine-leucine substitution in chloroplastic acetyl-CoA carboxylase from green foxtail (Setaria viridis L. Beauv.) is responsible for resistance to the cyclohexanedione herbicide sethoxydim. Planta, 2002, 214, 421-427.	3.2	106
12	Geographical variation in resistance to acetylâ€coenzyme A carboxylaseâ€inhibiting herbicides across the range of the arable weed <i>Alopecurus myosuroides</i> (blackâ€grass). New Phytologist, 2010, 186, 1005-1017.	7.3	103
13	Fitness costs associated with three mutant acetylâ€coenzyme A carboxylase alleles endowing herbicide resistance in blackâ€grass <i>Alopecurus myosuroides</i> . Journal of Applied Ecology, 2008, 45, 939-947.	4.0	99
14	PCR-based detection of resistance to acetyl-CoA carboxylase-inhibiting herbicides in black-grass (Alopecurus myosuroidesHuds) and ryegrass (Lolium rigidumGaud). Pest Management Science, 2002, 58, 474-478.	3.4	94
15	Complex genetic control of non-target-site-based resistance to herbicides inhibiting acetyl-coenzyme A carboxylase and acetolactate-synthase in Alopecurus myosuroides Huds Plant Science, 2010, 178, 501-509.	3.6	88
16	Nonâ€targetâ€siteâ€based resistance should be the centre of attention for herbicide resistance research: <i>Alopecurus myosuroides</i> as an illustration. Weed Research, 2011, 51, 433-437.	1.7	87
17	Molecular Bases for Sensitivity to Tubulin-Binding Herbicides in Green Foxtail. Plant Physiology, 2004, 136, 3920-3932.	4.8	85
18	Genetic Diversity and Pathogenic Variability Among Isolates of Colletotrichum Species from Strawberry. Phytopathology, 2003, 93, 219-228.	2.2	80

#	Article	IF	CITATIONS
19	Crossâ€resistance patterns to ACCaseâ€inhibiting herbicides conferred by mutant ACCase isoforms in ⟨i>Alopecurus myosuroides⟨ i> Huds. (blackâ€grass), reâ€examined at the recommended herbicide field rate. Pest Management Science, 2008, 64, 1179-1186.	3.4	76
20	Molecular Mechanisms of Herbicide Resistance. Weed Science, 2015, 63, 91-115.	1.5	73
21	Weed response to herbicides: regionalâ€scale distribution of herbicide resistance alleles in the grass weed Alopecurus myosuroides. New Phytologist, 2006, 171, 861-874.	7. 3	72
22	A new insight into arable weed adaptive evolution: mutations endowing herbicide resistance also affect germination dynamics and seedling emergence. Annals of Botany, 2013, 111, 681-691.	2.9	72
23	Genetic variation and population structure in blackâ€grass (<i>Alopecurus myosuroides</i> Huds.), a successful, herbicideâ€resistant, annual grass weed of winter cereal fields. Molecular Ecology, 2007, 16, 3161-3172.	3.9	67
24	Status of black grass (Alopecurus myosuroides) resistance to acetyl-coenzyme A carboxylase inhibitors in France. Weed Research, 2007, 47, 95-105.	1.7	66
25	ALOMYbase, a resource to investigate non-target-site-based resistance to herbicides inhibiting acetolactate-synthase (ALS) in the major grass weed Alopecurus myosuroides (black-grass). BMC Genomics, 2015, 16, 590.	2.8	66
26	SNP markers for black-grass (Alopecurus myosuroides Huds.) genotypes resistant to acetyl CoA-carboxylase inhibiting herbicides. Theoretical and Applied Genetics, 2002, 104, 1114-1120.	3.6	65
27	Evolution and diversity of the mechanisms endowing resistance to herbicides inhibiting acetolactate-synthase (ALS) in corn poppy (Papaver rhoeas L.). Plant Science, 2011, 180, 333-342.	3.6	62
28	RAPD Analysis Provides Insight into the Biology and Epidemiology of Uncinula necator. Phytopathology, 1997, 87, 670-677.	2.2	60
29	PCR Assays That Identify the Grapevine Dieback Fungus Eutypa lata. Applied and Environmental Microbiology, 2000, 66, 4475-4480.	3.1	58
30	Reference Genes to Study Herbicide Stress Response in Lolium sp.: Up-Regulation of P450 Genes in Plants Resistant to Acetolactate-Synthase Inhibitors. PLoS ONE, 2013, 8, e63576.	2.5	58
31	DNA Analysis of Herbarium Specimens of the Grass Weed Alopecurus myosuroides Reveals Herbicide Resistance Pre-Dated Herbicides. PLoS ONE, 2013, 8, e75117.	2.5	55
32	'Universal' primers for PCR-sequencing of grass chloroplastic acetyl-CoA carboxylase domains involved in resistance to herbicides. Weed Research, 2005, 45, 323-330.	1.7	54
33	â€`Universal' PCR assays detecting mutations in acetylâ€coenzyme A carboxylase or acetolactate synthase that endow herbicide resistance in grass weeds. Weed Research, 2011, 51, 353-362.	1.7	54
34	Adaptive introgression from maize has facilitated the establishment of teosinte as a noxious weed in Europe. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25618-25627.	7.1	54
35	Origin of primary infections of grape by Uncinula necator: RAPD analysis discriminates two biotypes. Mycological Research, 1998, 102, 283-288.	2.5	51
36	A molecular assay for the proactive detection of target site-based resistance to herbicides inhibiting acetolactate synthase in Alopecurus myosuroides. Weed Research, 2008, 48, 97-101.	1.7	42

#	Article	IF	CITATIONS
37	Transcriptional markers enable identification of rye-grass (Lolium sp.) plants with non-target-site-based resistance to herbicides inhibiting acetolactate-synthase. Plant Science, 2017, 257, 22-36.	3.6	42
38	Occurrence, genetic control and evolution of non-target-site based resistance to herbicides inhibiting acetolactate synthase (ALS) in the dicot weed Papaver rhoeas. Plant Science, 2015, 238, 158-169.	3.6	40
39	Nucleotide Variability at the Acetyl Coenzyme A Carboxylase Gene and the Signature of Herbicide Selection in the Grass Weed Alopecurus myosuroides (Huds.). Molecular Biology and Evolution, 2004, 21, 884-892.	8.9	39
40	High gene flow promotes the genetic homogeneity of arable weed populations at the landscape level. Basic and Applied Ecology, 2010, 11, 504-512.	2.7	37
41	Variation in the gene encoding acetolactateâ€synthase in <i>Lolium</i> species and proactive detection of mutant, herbicideâ€resistant alleles. Weed Research, 2009, 49, 326-336.	1.7	36
42	Validation of a set of reference genes to study response to herbicide stress in grasses. BMC Research Notes, 2012, 5, 18.	1.4	35
43	Fitness cost due to herbicide resistance may trigger genetic background evolution. Evolution; International Journal of Organic Evolution, 2015, 69, 271-278.	2.3	35
44	Nested Allele-Specific PCR Primers Distinguish Genetic Groups of <i>Uncinula necator</i> Applied and Environmental Microbiology, 1999, 65, 3950-3954.	3.1	34
45	Cloning and sequence analysis of the eburicol $14\hat{l}\pm$ -demethylase gene of the obligate biotrophic grape powdery mildew fungus. Gene, 1997, 195, 29-33.	2.2	31
46	Herbicide Safeners Decrease Sensitivity to Herbicides Inhibiting Acetolactate-Synthase and Likely Activate Non-Target-Site-Based Resistance Pathways in the Major Grass Weed Lolium sp. (Rye-Grass). Frontiers in Plant Science, 2017, 8, 1310.	3.6	27
47	A RAPD Assay for Strain Typing of the Biotrophic Grape Powdery Mildew Fungus Uncinula necator Using DNA Extracted from the Mycelium. Experimental Mycology, 1995, 19, 234-237.	1.6	25
48	Gene flow increases the initial frequency of herbicide resistance alleles in unselected Lolium rigidum populations. Agriculture, Ecosystems and Environment, 2011, 142, 403-409.	5.3	24
49	New gSSR and EST-SSR markers reveal high genetic diversity in the invasive plant Ambrosia artemisiifolia L. and can be transferred to other invasive Ambrosia species. PLoS ONE, 2017, 12, e0176197.	2.5	23
50	Multiple origins for black-grass (Alopecurus myosuroides Huds) target-site-based resistance to herbicides inhibiting acetyl-CoA carboxylase. Pest Management Science, 2004, 60, 35-41.	3.4	22
51	Genetic basis, evolutionary origin and spread of resistance to herbicides inhibiting acetolactate synthase in common groundsel (<i>Senecio vulgaris</i>). Pest Management Science, 2016, 72, 89-102.	3.4	19
52	Choosing the best cropping systems to target pleiotropic effects when managing singleâ€gene herbicide resistance in grass weeds. A blackgrass simulation study. Pest Management Science, 2016, 72, 1910-1925.	3.4	18
53	New tools for studying epidemiology and resistance of grape powdery mildew to DMI fungicides. Pest Management Science, 1997, 51, 309-314.	0.4	17
54	Using nextâ€generation sequencing to detect mutations endowing resistance to pesticides: application to acetolactateâ€synthase (<scp>ALS</scp>)â€based resistance in barnyard grass, a polyploid grass weed. Pest Management Science, 2015, 71, 675-685.	3.4	14

#	Article	IF	CITATIONS
55	Harnessing the power of nextâ€generation sequencing technologies to the purpose of highâ€throughput pesticide resistance diagnosis. Pest Management Science, 2020, 76, 543-552.	3.4	14
56	Isolation and Characterisation of 11 Polymorphic Microsatellite Markers in Papaver rhoeas L. (Corn) Tj ETQq0 0 (Sciences, 2013, 14, 470-479.	O rgBT /O [.] 4.1	verlock 10 Tf 5 11
57	Multiple resistance of <i>Papaver rhoeas</i> L. to 2,4â€D and acetolactate synthase inhibitors in four European countries. Weed Research, 2019, 59, 367-376.	1.7	11
58	A high diversity of mechanisms endows ALS-inhibiting herbicide resistance in the invasive common ragweed (Ambrosia artemisiifolia L.). Scientific Reports, 2021, 11, 19904.	3.3	11
59	A single polymerase chain reaction-based assay for simultaneous detection of two mutations conferring resistance to tubulin-binding herbicides in Setaria viridis. Weed Research, 2005, 45, 228-235.	1.7	9
60	Molecular evidence of biased inheritance of trifluralin herbicide resistance in foxtail millet. Plant Breeding, 2006, 125, 254-258.	1.9	9
61	Rapid isolation of both double-stranded RNA and PCR-suitable DNA from the obligate biotrophic phytopathogenic fungus Uncinula necator using a commercially available reagent. Journal of Virological Methods, 1998, 74, 149-153.	2.1	8
62	High conservation of the transcriptional response to acetolactateâ€synthaseâ€inhibiting herbicides across plant species. Weed Research, 2018, 58, 2-7.	1.7	8
63	Lab meets field: Accelerated selection and field monitoring concur that non-target-site-based resistance evolves first in the dicotyledonous, allergenic weed Ambrosia artemisiifolia. Plant Science, 2022, 317, 111202.	3.6	2
64	Herbicide Resistance in Setaria. Plant Genetics and Genomics: Crops and Models, 2017, , 251-266.	0.3	1