
Tamao Ishida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8754778/publications.pdf Version: 2024-02-01

TAMAO ISHIDA

#	Article	IF	CITATIONS
1	Deposition of Gold Clusters on Porous Coordination Polymers by Solid Grinding and Their Catalytic Activity in Aerobic Oxidation of Alcohols. Chemistry - A European Journal, 2008, 14, 8456-8460.	3.3	460
2	Importance of Size and Contact Structure of Gold Nanoparticles for the Genesis of Unique Catalytic Processes. Chemical Reviews, 2020, 120, 464-525.	47.7	386
3	Gold Catalysts: Towards Sustainable Chemistry. Angewandte Chemie - International Edition, 2007, 46, 7154-7156.	13.8	360
4	Influence of the Support and the Size of Gold Clusters on Catalytic Activity for Glucose Oxidation. Angewandte Chemie - International Edition, 2008, 47, 9265-9268.	13.8	264
5	One-Pot Synthesis of Indoles and Aniline Derivatives from Nitroarenes under Hydrogenation Condition with Supported Gold Nanoparticles. Organic Letters, 2009, 11, 5162-5165.	4.6	159
6	Heterogeneous Catalysis by Gold. Advances in Catalysis, 2012, 55, 1-126.	0.2	139
7	One-potN-alkylation of primary amines to secondary amines by gold clusters supported on porous coordination polymers. Gold Bulletin, 2009, 42, 267-274.	2.7	118
8	Direct deposition of gold nanoparticles onto polymer beads and glucose oxidation with H2O2. Journal of Colloid and Interface Science, 2008, 323, 105-111.	9.4	90
9	A Career in Catalysis: Masatake Haruta. ACS Catalysis, 2015, 5, 4699-4707.	11.2	74
10	Role of the Acid Site for Selective Catalytic Oxidation of NH ₃ over Au/Nb ₂ O ₅ . ACS Catalysis, 2019, 9, 1753-1756.	11.2	69
11	Advances in Gold Catalysis and Understanding the Catalytic Mechanism. Chemical Record, 2016, 16, 2278-2293.	5.8	55
12	Controlling the O-Vacancy Formation and Performance of Au/ZnO Catalysts in CO ₂ Reduction to Methanol by the ZnO Particle Size. ACS Catalysis, 2021, 11, 9022-9033.	11.2	53
13	Baseâ€Free Direct Oxidation of 1â€Octanol to Octanoic Acid and its Octyl Ester over Supported Gold Catalysts. ChemSusChem, 2012, 5, 2243-2248.	6.8	52
14	Efficient Decarbonylation of Furfural to Furan Catalyzed by Zirconia‣upported Palladium Clusters with Low Atomicity. ChemSusChem, 2016, 9, 3441-3447.	6.8	47
15	CO ₂ Reduction to Methanol on Au/CeO ₂ Catalysts: Mechanistic Insights from Activation/Deactivation and SSITKA Measurements. ACS Catalysis, 2020, 10, 3580-3594.	11.2	47
16	Aerobic oxidation of glucose and 1-phenylethanol over gold nanoparticles directly deposited on ion-exchange resins. Applied Catalysis A: General, 2009, 353, 243-248.	4.3	42
17	CO Oxidation over Au/ZnO: Unprecedented Change of the Reaction Mechanism at Low Temperature Caused by a Different O ₂ Activation Process. ACS Catalysis, 2019, 9, 8364-8372.	11.2	42
18	Features of Nb2O5 as a metal oxide support of Pt and Pd catalysts for selective catalytic oxidation of NH3 with high N2 selectivity. Journal of Catalysis, 2020, 389, 366-374.	6.2	33

Ταμαο Ishida

#	Article	IF	CITATIONS
19	Defective NiO as a Stabilizer for Au Single-Atom Catalysts. ACS Catalysis, 2022, 12, 6149-6158.	11.2	30
20	Preparation of microporous polymer-encapsulated Pd nanoparticles and their catalytic performance for hydrogenation and oxidation. Tetrahedron, 2014, 70, 6150-6155.	1.9	29
21	Direct CH Arene Homocoupling over Gold Nanoparticles Supported on Metal Oxides. ChemSusChem, 2015, 8, 695-701.	6.8	29
22	Carbon Monoxide Oxidation by Polyoxometalateâ€Supported Gold Nanoparticulate Catalysts: Activity, Stability, and Temperature―Dependent Activation Properties. Angewandte Chemie - International Edition, 2018, 57, 1523-1527.	13.8	29
23	Sorption behavior of the Pt(II) complex anion on manganese dioxide (δ-MnO2): a model reaction to elucidate the mechanism by which Pt is concentrated into a marine ferromanganese crust. Mineralium Deposita, 2016, 51, 211-218.	4.1	28
24	Wacker Oxidation of Terminal Alkenes Over ZrO 2 ‣upported Pd Nanoparticles Under Acid―and Cocatalystâ€Free Conditions. ChemSusChem, 2017, 10, 3482-3489.	6.8	27
25	Supported gold cluster catalysts prepared by solid grinding using a non-volatile organogold complex for low-temperature CO oxidation and the effect of potassium on gold particle size. Applied Catalysis B: Environmental, 2019, 241, 539-547.	20.2	27
26	Aerobic oxidation of cyclohexanones to phenols and aryl ethers over supported Pd catalysts. Organic Chemistry Frontiers, 2015, 2, 654-660.	4.5	25
27	Carbon Monoxide Oxidation by Polyoxometalateâ€Supported Gold Nanoparticulate Catalysts: Activity, Stability, and Temperature―Dependent Activation Properties. Angewandte Chemie, 2018, 130, 1539-1543.	2.0	23
28	Ethanol Oxidation in Water Catalyzed by Gold Nanoparticles Supported on NiO Doped with Cu. Topics in Catalysis, 2015, 58, 295-301.	2.8	20
29	Preparation of gold clusters on metal oxides by deposition-precipitation with microwave drying and their catalytic performance for CO and sulfide oxidation. Chinese Journal of Catalysis, 2017, 38, 1888-1898.	14.0	20
30	Oxidation of β-Nicotinamide Adenine Dinucleotide (NADH) by Au Cluster and Nanoparticle Catalysts Aiming for Coenzyme Regeneration in Enzymatic Glucose Oxidation. ACS Sustainable Chemistry and Engineering, 2020, 8, 10413-10422.	6.7	20
31	Chloride-free and water-soluble Au complex for preparation of supported small nanoparticles by impregnation method. Journal of Catalysis, 2017, 353, 74-80.	6.2	17
32	Elucidation of Active Sites of Gold Nanoparticles on Acidic Ta ₂ O ₅ Supports for CO Oxidation. ACS Catalysis, 2020, 10, 9328-9335.	11.2	17
33	Adsorption and emission enhancement behavior of 4,4′-bipyridine on dispersed montmorillonite nano-sheets under aqueous conditions. Tetrahedron Letters, 2018, 59, 2459-2462.	1.4	16
34	Performance of Au/ZnO catalysts in CO2 reduction to methanol: Varying the Au loading / Au particle size. Applied Catalysis A: General, 2021, 624, 118318.	4.3	15
35	Oxidative esterification of aliphatic aldehydes and alcohols with ethanol over gold nanoparticle catalysts in batch and continuous flow reactors. Applied Catalysis A: General, 2019, 585, 117169.	4.3	13
36	Enhancement effect of strong metal-support interaction (SMSI) on the catalytic activity of substituted-hydroxyapatite supported Au clusters. Journal of Catalysis, 2022, 410, 194-205.	6.2	13

Ταμαο Ishida

#	Article	IF	CITATIONS
37	C–H Bond Functionalization Using Pd- and Au-Supported Catalysts with Mechanistic Insights of the Active Species. Synthesis, 2021, 53, 3279-3289.	2.3	11
38	Cooperative catalysis of palladium nanoparticles and cobalt oxide support for formylation of aryl iodides under syngas atmosphere. Applied Catalysis A: General, 2014, 469, 146-152.	4.3	10
39	Formation of Gold Clusters on La–Ni Mixed Oxides and Its Catalytic Performance for Isomerization of Allylic Alcohols to Saturated Aldehydes. Chemistry Letters, 2014, 43, 1368-1370.	1.3	9
40	Factors for the emission enhancement of dimidium in specific media such as in DNA and on a clay surface. Physical Chemistry Chemical Physics, 2019, 21, 22732-22739.	2.8	9
41	Optically Transparent Colloidal Dispersion of Titania Nanoparticles Storable for Longer than One Year Prepared by Sol/Gel Progressive Hydrolysis/Condensation. ACS Applied Materials & Interfaces, 2020, 12, 44743-44753.	8.0	9
42	Ligand effect of gold colloid in the preparation of Au/Nb2O5 for CO oxidation. Journal of Catalysis, 2020, 389, 9-18.	6.2	9
43	Gold nanoparticles assisted formation of cobalt species for intermolecular hydroaminomethylation and intramolecular cyclocarbonylation of olefins. Catalysis Science and Technology, 2013, 3, 3000.	4.1	8
44	Anisotropic energy transfer in a clay–porphyrin layered system with environment-responsiveness. Physical Chemistry Chemical Physics, 2020, 22, 14261-14267.	2.8	8
45	Effect of Li ions doping into p-type semiconductor NiO as a hole injection/transfer medium in the CO2 reduction sensitized/catalyzed by Zn-porphyrin/Re-complex upon visible light irradiation. Research on Chemical Intermediates, 2021, 47, 269-285.	2.7	8
46	Anti-inflammatory effect of gold nanoparticles supported on metal oxides. Scientific Reports, 2021, 11, 23129.	3.3	7
47	Remarkable enhancement of Fe–V–Ox composite metal oxide to gold catalyst for CO oxidation in the simulated atmosphere of CO2 laser. RSC Advances, 2017, 7, 38780-38783.	3.6	5
48	Oxide-Supported Palladium and Gold Nanoparticles for Catalytic C-H Transformations. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 1150-1161.	0.1	5
49	Selective adsorption of 1,3-dimethyltrisulfane (DMTS) responsible for aged odour in Japanese sake using supported gold nanoparticles. Scientific Reports, 2018, 8, 16064.	3.3	5
50	Dye-Sensitized Hydrogen Production by Porphyrin/Rh-Doped-Titania-Nanosheet Complex. Bulletin of the Chemical Society of Japan, 2021, 94, 937-942.	3.2	5
51	Effects of the Surface Charge Density of Clay Minerals on Surface-Fixation Induced Emission of Acridinium Derivatives. ACS Omega, 2021, 6, 21702-21708.	3.5	5
52	Adsorption Behavior of Mono-Cationic Pyridinium Salts on the Clay Surface. Bulletin of the Chemical Society of Japan, 2020, 93, 1046-1049.	3.2	4
53	Thermodynamic study of the adsorption of acridinium derivatives on the clay surface. RSC Advances, 2020, 10, 21360-21368.	3.6	4
54	Facile Synthesis of MnO2@SiO2/Carbon Nanocomposite-based Gold Catalysts from Rice Husk for Low-Temperature CO Oxidation. Catalysis Letters, 2020, 150, 2726-2733.	2.6	4

Ταμαο Ishida

#	Article	IF	CITATIONS
55	Intramolecular cyclization of alkynoic acid catalyzed by Na-salt-modified Au nanoparticles supported on metal oxides. Applied Catalysis A: General, 2022, 643, 118765.	4.3	4
56	Effect of clay surface on aldehyde-diol equilibrium. Tetrahedron Letters, 2019, 60, 150986.	1.4	3
57	"In-water―Dehydration Reaction of an Aromatic Diol on an Inorganic Surface. Langmuir, 2021, 37, 11978-11985.	3.5	3
58	Precise evaluation of adsorption behavior of cationic porphyrin on monolayer of perovskite-type niobia nanosheet by absorption spectroscopy. Journal of Physics and Chemistry of Solids, 2022, 161, 110423.	4.0	3
59	Effect of poly(N-vinylpyrrolidone) ligand on catalytic activities of Au nanoparticles supported on Nb2O5 for CO oxidation and furfural oxidation. Catalysis Today, 2023, 410, 143-149.	4.4	2
60	Unique Enzyme Activity of Peroxidase on a Clay Nanosheet. Langmuir, 2020, 36, 8384-8388.	3.5	1