
Anatoly M Maksimchuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8754593/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Forward Ion Acceleration in Thin Films Driven by a High-Intensity Laser. Physical Review Letters, 2000, 84, 4108-4111.	7.8	677
2	Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate. Optics Express, 2008, 16, 2109.	3.4	655
3	Bright spatially coherent synchrotron X-rays from a table-top source. Nature Physics, 2010, 6, 980-983.	16.7	392
4	Generation and characterization of the highest laser intensities (10^22 W/cm^2). Optics Letters, 2004, 29, 2837.	3.3	390
5	Nonlinear Optics in Relativistic Plasmas and Laser Wake Field Acceleration of Electrons. Science, 1996, 273, 472-475.	12.6	360
6	Ionization Induced Trapping in a Laser Wakefield Accelerator. Physical Review Letters, 2010, 104, 025004.	7.8	340
7	Electron Acceleration by a Laser Wakefield in a Relativistically Self-Guided Channel. Physical Review Letters, 1997, 78, 3125-3128.	7.8	254
8	Experimental observation of relativistic nonlinear Thomson scattering. Nature, 1998, 396, 653-655.	27.8	247
9	Snapshots of laser wakefields. Nature Physics, 2006, 2, 749-753.	16.7	196
10	Laser-triggered ion acceleration and table top isotope production. Applied Physics Letters, 2001, 78, 595-597.	3.3	187
11	Self-focusing, channel formation, and high-energy ion generation in interaction of an intense short laser pulse with a He jet. Physical Review E, 1999, 59, 7042-7054.	2.1	183
12	Observation of Synchrotron Radiation from Electrons Accelerated in a Petawatt-Laser-Generated Plasma Cavity. Physical Review Letters, 2008, 100, 105006.	7.8	179
13	Accelerating monoenergetic protons from ultrathin foils by flat-top laser pulses in the directed-Coulomb-explosion regime. Physical Review E, 2008, 78, 026412.	2.1	160
14	Table-Top Laser-Based Source of Femtosecond, Collimated, Ultrarelativistic Positron Beams. Physical Review Letters, 2013, 110, 255002.	7.8	149
15	Attosecond Electron Bunches. Physical Review Letters, 2004, 93, 195003.	7.8	147
16	Fast ignitor concept with light ions. Plasma Physics Reports, 2001, 27, 1017-1020.	0.9	142
17	High-energy ion generation in interaction. of short laser pulse with high-density plasma. Applied Physics B: Lasers and Optics, 2002, 74, 207-215.	2.2	140
18	Generation of GeV protons from 1 PW laser interaction with near critical density targets. Physics of Plasmas, 2010, 17, .	1.9	126

#	Article	IF	CITATIONS
19	X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator. Applied Physics Letters, 2011, 99, .	3.3	118
20	Evolution of a Plasma Waveguide Created during Relativistic-Ponderomotive Self-Channeling of an Intense Laser Pulse. Physical Review Letters, 1998, 80, 2610-2613.	7.8	117
21	Xâ€ray spectroscopy of hot solid density plasmas produced by subpicosecond high contrast laser pulses at 1018–1019W/cm2. Physics of Plasmas, 1995, 2, 1702-1711.	1.9	116
22	Wave-front correction of femtosecond terawatt lasers by deformable mirrors. Optics Letters, 1998, 23, 1043.	3.3	104
23	Accelerating protons to therapeutic energies with ultraintense, ultraclean, and ultrashort laser pulses. Medical Physics, 2008, 35, 1770-1776.	3.0	101
24	Temporal Characterization of a Self-Modulated Laser Wakefield. Physical Review Letters, 1996, 77, 5381-5384.	7.8	95
25	Observation of Phase-Matched Relativistic Harmonic Generation. Physical Review Letters, 2000, 84, 5528-5531.	7.8	86
26	Finite Spot Effects on Radiation Pressure Acceleration from Intense High-Contrast Laser Interactions with Thin Targets. Physical Review Letters, 2012, 108, 175005.	7.8	76
27	Scaling High-Order Harmonic Generation from Laser-Solid Interactions to Ultrahigh Intensity. Physical Review Letters, 2013, 110, 175002.	7.8	73
28	Characterization of focal field formed by a large numerical aperture paraboloidal mirror and generation of ultra-high intensity (1022 W/cm2). Applied Physics B: Lasers and Optics, 2005, 80, 823-832.	2.2	67
29	Application of a picosecond soft x-ray source to time-resolved plasma dynamics. Applied Physics Letters, 1997, 70, 312-314.	3.3	65
30	Control of Bright Picosecond X-Ray Emission from Intense Subpicosecond Laser-Plasma Interactions. Physical Review Letters, 1995, 75, 2324-2327.	7.8	63
31	Characterization of transverse beam emittance of electrons from a laser-plasma wakefield accelerator in the bubble regime using betatron x-ray radiation. Physical Review Special Topics: Accelerators and Beams, 2012, 15, .	1.8	63
32	Ultrafast Electron Radiography of Magnetic Fields in High-Intensity Laser-Solid Interactions. Physical Review Letters, 2013, 110, 015003.	7.8	61
33	High harmonic generation in relativistic laser–plasma interaction. Physics of Plasmas, 2002, 9, 2393-2398.	1.9	60
34	High-Power, Kilojoule Class Laser Channeling in Millimeter-Scale Underdense Plasma. Physical Review Letters, 2011, 106, 105002.	7.8	58
35	High-energy ion generation by short laser pulses. Plasma Physics Reports, 2004, 30, 473-495.	0.9	57
36	High-power, kilojoule laser interactions with near-critical density plasma. Physics of Plasmas, 2011, 18,	1.9	57

ANATOLY M MAKSIMCHUK

#	Article	IF	CITATIONS
37	On the design of experiments for the study of relativistic nonlinear optics in the limit of single-cycle pulse duration and single-wavelength spot size. Plasma Physics Reports, 2002, 28, 12-27.	0.9	55
38	Single-shot wave-front measurements of high-intensity ultrashort laser pulses with a three-wave interferometer. Optics Letters, 1998, 23, 621.	3.3	52
39	Detailed dynamics of electron beams self-trapped and accelerated in a self-modulated laser wakefield. Physics of Plasmas, 1999, 6, 4739-4749.	1.9	48
40	Comparison of bulk and pitcher-catcher targets for laser-driven neutron production. Physics of Plasmas, 2011, 18, .	1.9	48
41	Surface waves and electron acceleration from high-power, kilojoule-class laser interactions with underdense plasma. New Journal of Physics, 2013, 15, 025023.	2.9	46
42	Energetic neutron beams generated from femtosecond laser plasma interactions. Applied Physics Letters, 2013, 102, .	3.3	44
43	Formation of Optical Bullets in Laser-Driven Plasma Bubble Accelerators. Physical Review Letters, 2010, 104, 134801.	7.8	42
44	Neutron production from ⁷ Li(d, <i>x</i> n) nuclear fusion reactions driven by high-intensity laser–target interactions. Plasma Physics and Controlled Fusion, 2010, 52, 045015.	2.1	39
45	Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets. Applied Physics Letters, 2014, 104, .	3.3	38
46	High-Resolved X-ray Spectra of Hollow Atoms in a Femtosecond Laser-Produced Solid Plasma. Physica Scripta, 1999, T80, 536.	2.5	37
47	X-ray radiation from ions with K-shell vacancies. Journal of Quantitative Spectroscopy and Radiative Transfer, 2000, 65, 477-499.	2.3	37
48	Amplified spontaneous emission in a Ti:sapphire regenerative amplifier. Applied Optics, 2003, 42, 7231.	2.1	37
49	Current Filamentation Instability in Laser Wakefield Accelerators. Physical Review Letters, 2011, 106, 105001.	7.8	37
50	Studies of laser wakefield structures and electron acceleration in underdense plasmas. Physics of Plasmas, 2008, 15, 056703.	1.9	35
51	Signal averaging xâ€ray streak camera with picosecond jitter. Review of Scientific Instruments, 1996, 67, 697-699.	1.3	34
52	Control of Energy Spread and Dark Current in Proton and Ion Beams Generated in High-Contrast Laser Solid Interactions. Physical Review Letters, 2011, 107, 065003.	7.8	33
53	Laser-driven generation of collimated ultra-relativistic positron beams. Plasma Physics and Controlled Fusion, 2013, 55, 124017.	2.1	33
54	The unexpected role of evolving longitudinal electric fields in generating energetic electrons in relativistically transparent plasmas. New Journal of Physics, 2018, 20, 093024.	2.9	33

ANATOLY M MAKSIMCHUK

#	Article	IF	CITATIONS
55	Relativistic-electron-driven magnetic reconnection in the laboratory. Physical Review E, 2018, 98, .	2.1	32
56	Relativistic plasma shutter for ultraintense laser pulses. Applied Physics Letters, 2009, 94, 201117.	3.3	31
57	Measurements of high-energy radiation generation from laser-wakefield accelerated electron beams. Physics of Plasmas, 2014, 21, .	1.9	31
58	Observation of the plasma channel dynamics and Coulomb explosion in the interaction of a high-intensity laser pulse with a He gas jet. JETP Letters, 1997, 66, 828-834.	1.4	30
59	Excitation and damping of a self-modulated laser wakefield. Physics of Plasmas, 2000, 7, 403-413.	1.9	30
60	Second-harmonic generation and wave-front correction of a terawatt laser system. Optics Letters, 2000, 25, 508.	3.3	29
61	Focusability of laser pulses at petawatt transport intensities in thin-film compression. Journal of the Optical Society of America B: Optical Physics, 2019, 36, A28.	2.1	29
62	Nonlinear temporal diffraction and frequency shifts resulting from pulse shaping in chirped-pulse amplification systems. Optics Letters, 1995, 20, 1163.	3.3	28
63	Relativistic generation of isolated attosecond pulses: a different route to extreme intensity. Journal of Modern Optics, 2005, 52, 305-319.	1.3	28
64	The impact of contaminants on laser-driven light ion acceleration. Physics of Plasmas, 2010, 17, 103111.	1.9	27
65	X-ray radiation from matter in extreme conditions. Journal of Quantitative Spectroscopy and Radiative Transfer, 2000, 65, 367-385.	2.3	26
66	Optimization of laser-nanowire target interaction to increase the proton acceleration efficiency. Plasma Physics and Controlled Fusion, 2019, 61, 065016.	2.1	26
67	Ensemble of ultra-high intensity attosecond pulses from laser–plasma interaction. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 476-480.	2.1	25
68	Optical Deflection and Temporal Characterization of an Ultrafast Laser-Produced Electron Beam. Physical Review Letters, 2005, 95, 035004.	7.8	24
69	Stimulated Raman Side Scattering in Laser Wakefield Acceleration. Physical Review Letters, 2010, 105, 034801.	7.8	24
70	Dominant deuteron acceleration with a high-intensity laser for isotope production and neutron generation. Applied Physics Letters, 2013, 102, 191117.	3.3	24
71	Guiding of 35 TW laser pulses in ablative capillary discharge waveguides. Physics of Plasmas, 2009, 16, 113105.	1.9	23
72	Relativistic spherical plasma waves. Physics of Plasmas, 2012, 19, 020702.	1.9	23

ΑΝΑΤΟΙΥ Μ ΜΑΚSIMCHUK

#	Article	IF	CITATIONS
73	High-harmonic generation in plasmas from relativistic laser-electron scattering. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 182.	2.1	21
74	Photonuclear fission with quasimonoenergetic electron beams from laser wakefields. Applied Physics Letters, 2006, 89, 231107.	3.3	21
75	High contrast ion acceleration at intensities exceeding 1021 Wcmâ^'2. Physics of Plasmas, 2013, 20, .	1.9	21
76	Energy scaling of quasi-monoenergetic electron beams from laser wakefields driven by 40-TW ultra-short pulses. Applied Physics B: Lasers and Optics, 2007, 89, 201-207.	2.2	20
77	Holographic visualization of laser wakefields. New Journal of Physics, 2010, 12, 045016.	2.9	20
78	Electron acceleration by few-cycle laser pulses with single-wavelength spot size. Physical Review E, 2003, 67, 026416.	2.1	19
79	High-Flux Femtosecond X-Ray Emission from Controlled Generation of Annular Electron Beams in a Laser Wakefield Accelerator. Physical Review Letters, 2016, 117, 094801.	7.8	19
80	Comparative study of betatron radiation from laser-wakefield and direct-laser accelerated bunches of relativistic electrons. Proceedings of SPIE, 2009, , .	0.8	17
81	High resolution bremsstrahlung and fast electron characterization in ultrafast intense laser–solid interactions. New Journal of Physics, 2013, 15, 123038.	2.9	17
82	<title>Development of a subpicosecond large-dynamic-range x-ray streak camera</title> . Proceedings of SPIE, 1997, , .	0.8	16
83	Observation of laser satellites in a plasma produced by a femtosecond laser pulse. JETP Letters, 1997, 66, 480-486.	1.4	16
84	Front versus rear side light-ion acceleration from high-intensity laser–solid interactions. Plasma Physics and Controlled Fusion, 2011, 53, 014011.	2.1	15
85	Demonstration of fiber-laser-produced plasma source and application to efficient extreme UV light generation. Optics Letters, 2006, 31, 2517.	3.3	14
86	Characterizing extreme laser intensities by ponderomotive acceleration of protons from rarified gas. New Journal of Physics, 2020, 22, 023003.	2.9	14
87	Efficient initiation of photonuclear reactions using quasimonoenergetic electron beams from laser wakefield acceleration. Journal of Applied Physics, 2007, 102, .	2.5	13
88	Polarization-Dependent Self-Injection by Above Threshold Ionization Heating in a Laser Wakefield Accelerator. Physical Review Letters, 2020, 124, 114801.	7.8	11
89	Electromagnetic pulse reflection at self-generated plasma mirrors: Laser pulse shaping and high order harmonic generation. Physics of Plasmas, 2007, 14, 093105.	1.9	9
90	Experimental laser wakefield acceleration scalings exceeding 100 TW. Physics of Plasmas, 2012, 19, 063113.	1.9	9

#	Article	IF	CITATIONS
91	Improved laser-to-proton conversion efficiency in isolated reduced mass targets. Applied Physics Letters, 2013, 103, .	3.3	9
92	Acceleration of high charge-state target ions in high-intensity laser interactions with sub-micron targets. New Journal of Physics, 2016, 18, 113032.	2.9	9
93	Picosecond x-rays from subpicosecond-laser-produced hot-dense matter. Journal of Quantitative Spectroscopy and Radiative Transfer, 1995, 54, 401-411.	2.3	8
94	High-intensity laser-driven proton acceleration enhancement from hydrogen containing ultrathin targets. Applied Physics Letters, 2013, 103, 141117.	3.3	8
95	Measurements of electron beam ring structures from laser wakefield accelerators. Plasma Physics and Controlled Fusion, 2019, 61, 065012.	2.1	7
96	Nonlinear optics in relativistic plasmas. Optics Express, 1998, 2, 282.	3.4	6
97	Dense and Relativistic Plasmas Produced by Compact Highâ€Intensity Lasers. Astrophysical Journal, Supplement Series, 2000, 127, 513-518.	7.7	6
98	Energetic electron and ion generation from interactions of intense laser pulses with laser machined conical targets. Nuclear Fusion, 2010, 50, 055006.	3.5	6
99	Enhanced laser absorption from radiation pressure in intense laser plasma interactions. New Journal of Physics, 2017, 19, 063014.	2.9	6
100	High-Intensity Laser Triggered Proton Acceleration from Ultrathin Foils. Contributions To Plasma Physics, 2013, 53, 161-164.	1.1	5
101	Enhanced spatial resolution of Eljen-204 plastic scintillators for use in rep-rated proton diagnostics. Review of Scientific Instruments, 2020, 91, 103301.	1.3	5
102	The effects of laser polarization and wavelength on injection dynamics of a laser wakefield accelerator. Physics of Plasmas, 2021, 28, .	1.9	5
103	Self-guided laser wakefield acceleration using ablated plasma targets. Plasma Physics and Controlled Fusion, 2009, 51, 095003.	2.1	4
104	Analysis of sinusoidally modulated chirped laser pulses by temporally encoded spectral shifting. Optics Letters, 2016, 41, 5503.	3.3	4
105	Ionization injection effects in x-ray spectra generated by betatron oscillations in a laser wakefield accelerator. Plasma Physics and Controlled Fusion, 2016, 58, 055012.	2.1	4
106	Stimulated Raman backscattering from a laser wakefield accelerator. New Journal of Physics, 2018, 20, 073039.	2.9	4
107	X-ray phase contrast imaging of additive manufactured structures using a laser wakefield accelerator. Plasma Physics and Controlled Fusion, 2019, 61, 054009.	2.1	4
108	Generation, Amplitude and Phase Characterization of 1021W/cm2 Intensity. Springer Series in Optical Sciences, 2004, , 329-332.	0.7	4

ANATOLY M MAKSIMCHUK

#	Article	IF	CITATIONS
109	Generation and characterization of quasi-monoenergetic electron beams from laser wakefield. European Physical Journal Special Topics, 2006, 133, 1123-1126.	0.2	4
110	High flux femtosecond x-ray emission from the electron-hose instability in laser wakefield accelerators. Physical Review Accelerators and Beams, 2018, 21, .	1.6	4
111	Scintillator detector characterization for laser-driven proton beam imaging. Review of Scientific Instruments, 2020, 91, 123304.	1.3	4
112	High-harmonic generation in plasmas by relativistic Thomson scattering. Journal of Modern Optics, 2002, 49, 2599-2614.	1.3	3
113	Laser-triggered quasi-monoenergetic ion beams at a moderate intensity and pulse duration. Laser Physics, 2008, 18, 1025-1030.	1.2	3
114	Synchrotron x-ray radiation from laser wakefield accelerated electron beams in a plasma channel. Journal of Physics: Conference Series, 2010, 244, 042026.	0.4	3
115	Narrow Energy Spread Protons and Ions from High-Intensity, High-Contrast Laser Solid Target Interactions. , 2010, , .		3
116	Investigation of relativistic intensity laser generated hot electron dynamics via copper K _α imaging and proton acceleration. Physics of Plasmas, 2013, 20, 123112.	1.9	3
117	On the properties of synchrotron-like X-ray emission from laser wakefield accelerated electron beams. Physics of Plasmas, 2018, 25, 043104.	1.9	3
118	Demonstration of femtosecond broadband X-rays from laser wakefield acceleration as a source for pump-probe X-ray absorption studies. High Energy Density Physics, 2020, 35, 100729.	1.5	3
119	Snapshots of Laser-Generated Wakefields. AIP Conference Proceedings, 2006, , .	0.4	2
120	Laser wakefield acceleration experiments at the University of Michigan. , 2009, , .		2
121	Formation of Optical Bullets in Laser-Driven Plasma Bubble Accelerators. , 2010, , .		2
122	A table-top laser-based source of short, collimated, ultra-relativistic positron beams. Proceedings of SPIE, 2013, , .	0.8	2
123	Relativistic intensity laser interactions with low-density plasmas. Journal of Physics: Conference Series, 2016, 688, 012126.	0.4	2
124	Characterization of electrons and x-rays produced using chirped laser pulses in a laser wakefield accelerator. Plasma Physics and Controlled Fusion, 2016, 58, 105003.	2.1	2
125	Laser induced THz Sommerfeld waves along metal wire. EPJ Web of Conferences, 2018, 195, 03002.	0.3	2
126	Multi-electron beam generation using co-propagating, parallel laser beams. New Journal of Physics, 2018, 20, 093021.	2.9	2

#	Article	IF	CITATIONS
127	Nonlinear relativistic optics in the single cycle, single wavelength regime and kilohertz repetition rate. AIP Conference Proceedings, 2002, , .	0.4	1
128	Proton Acceleration to Therapeutic Energies with Ultra-Intense Ultra-Clean and Ultra-Short Laser Pulses. AIP Conference Proceedings, 2006, , .	0.4	1
129	Proton acceleration from thin foils using ultraintense, high-contrast pulses. , 2007, , .		1
130	Ultra-high intensity-high contrast 300-TW laser at 0.1 Hz repetition rate. , 2008, , .		1
131	Laser Wakefield Acceleration Experiments Using HERCULES Laser. , 2009, , .		1
132	Swarm of ultra-high intensity attosecond pulses from laser-plasma interaction. Journal of Physics: Conference Series, 2010, 244, 022029.	0.4	1
133	Visualization of plasma bubble accelerators using Frequency-Domain Shadowgraphy. High Energy Density Physics, 2010, 6, 153-156.	1.5	1
134	Proton Probe Imaging of Fields Within a Laser-Generated Plasma Channel. IEEE Transactions on Plasma Science, 2011, 39, 2616-2617.	1.3	1
135	Ultra-intense laser neutron generation through efficient deuteron acceleration. Proceedings of SPIE, 2013, , .	0.8	1
136	Laser seeded electron beam filamentation in high intensity laser wakefield acceleration. , 2013, , .		1
137	On electron betatron motion and electron injection in laser wakefield accelerators. Plasma Physics and Controlled Fusion, 2014, 56, 084009.	2.1	1
138	Target surface area effects on hot electron dynamics from high intensity laser–plasma interactions. New Journal of Physics, 2016, 18, 063020.	2.9	1
139	Sarri etÂal. Reply:. Physical Review Letters, 2020, 124, 179502.	7.8	1
140	Ultra-high intensity-High Contrast 300-TW laser at 0.1 Hz repetition rate. Springer Series in Chemical Physics, 2009, , 750-752.	0.2	1
141	Intense gamma-ray source based on focused electron beams from a laser wakefield accelerator. Applied Physics Letters, 2022, 120, .	3.3	1
142	<title>Near-10-MeV ion acceleration in the forward direction and isotope production with a high-intensity laser</title> . , 2001, , .		0
143	Forward ion acceleration and nuclear reactions on a tabletop driven by a high-intensity laser. , 2001, 4352, 120.		0
144	Nonlinear relativistic optics in the single-cycle, single-wavelength regime with kilohertz repetition		0

rate. , 0, , .

ΑΝΑΤΟΙΥ Μ ΜΑΚSIMCHUK

#	Article	IF	CITATIONS
145	Laser Wakefield Acceleration of High-Quality Electron Beams to 300 MeV and Efficient Initiation of Photonuclear Reactions. AIP Conference Proceedings, 2006, , .	0.4	Ο
146	Generation of ultrashort pulses of electrons, X-rays and optical pulses by relativistically strong light. AIP Conference Proceedings, 2006, , .	0.4	0
147	Single-shot, real-time measurement of laser wakefields using frequency domain holography (FDH). , 2006, , .		0
148	Acceleration of quasi-monochromatic electron beams in laser wakefield to 300 Mev and initiation of photonuclear reactions. , 2006, , .		0
149	Ultrafast Imaging of Wakefields. , 2007, , .		0
150	Proton Acceleration from Thin Foils Using Ultraintense, High-Contrast Pulses. , 2007, , .		0
151	Guiding and Ionization Blueshift in Ablative Capillary Waveguide Accelerators. , 2009, , .		Ο
152	Simulation of Weibel Instability for LWFA and PWFA Electron Beams. , 2009, , .		0
153	Control of proton energy in ultra-high intensity laser-matter interaction. Journal of Physics: Conference Series, 2010, 244, 042025.	0.4	Ο
154	Effects of Ionization in a Laser Wakefield Accelerator. , 2010, , .		0
155	X-ray phase contrast imaging of biological specimens with tabletop synchrotron radiation. Nature Precedings, 2011, , .	0.1	0
156	Laser produced directed neutron beams. , 2011, , .		0
157	Enhanced energy coupling by using structured nano-wire targets. EPJ Web of Conferences, 2013, 59, 17007.	0.3	Ο
158	Final amplifier for laser accelerators. , 2013, , .		0
159	Solid-Density Experiments for Laser-Based Thomson Scattering: Approaching the Radiation Dominated Regime. , 2014, , .		0
160	X-Ray imaging of ultrafast magnetic reconnection driven by relativistic electrons. Proceedings of SPIE, 2015, , .	0.8	0
161	Development of mini-undulators for a table-top free-electron laser. Laser and Particle Beams, 2018, 36, 396-404.	1.0	0
162	Laser triggered radiation sources (from terahertz radiation to gamma-rays). , 2018, , .		0

#	Article	IF	CITATIONS
163	Generation of terahertz electromagnetic wave by high-intensity laser pulse interaction with solid targets. , 2018, , .		0
164	Optimization of the electron beam dump for a GeV-class laser electron accelerator. Applied Radiation and Isotopes, 2021, 176, 109853.	1.5	0
165	TH-C-230A-06: High-Energy Proton Acceleration Driven by Ultra-Intense Ultra-Clean Laser Pulses. Medical Physics, 2006, 33, 2272-2272.	3.0	0
166	Anomalous transmission of high contrast relativistically intense short pulses through thin metal foils. European Physical Journal Special Topics, 2006, 133, 511-514.	0.2	0
167	Contrast Challenge for Ultrahigh-intensity Experiments on High-density Targets. , 2009, , .		0
168	Coherent Betatron Radiation from Laser-Wakefield Accelerated Bunches of Monoenergetic Electrons. , 2009, , .		0
169	MO-EE-A2-05: Experimental Implementation of the Directed Coulomb Explosion Regime of Laser-Proton Acceleration. Medical Physics, 2009, 36, 2703-2703.	3.0	0
170	Formation of Optical Bullets in Laser-driven Plasma Bubble Accelerators. , 2010, , .		0
171	Observation of Optical Bullets formed in Laser-driven Plasma Bubble Accelerators. , 2010, , .		0
172	Ion Acceleration with Ultra-Intense Lasers. , 2010, , .		0
173	SU-GG-T-462: Observation of Quasi-Monoenergetic Laser Accelerated Proton and Carbon Beams. Medical Physics, 2010, 37, 3293-3293.	3.0	0
174	High-aspect-ratio Plasma Target for Raman Backscattering in Exawatt Laser Development. , 2012, , .		0
175	Temporal Encoding of Spectral Modulations in Chirped Pulses. , 2016, , .		Ο