Rafael Linden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8754396/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuroprotective Gene Therapy by Overexpression of the Transcription Factor MAX in Rat Models of Glaucomatous Neurodegeneration. , 2022, 63, 5.		11
2	Roles of glutamate receptors in a novel in vitro model of early, comorbid cerebrovascular, and Alzheimer's diseases. Journal of Neurochemistry, 2021, 156, 539-552.	3.9	4
3	Gene Therapy Strategies for Glaucomatous Neurodegeneration. Current Gene Therapy, 2021, 21, 362-381.	2.0	4
4	Cell proliferation in the central nervous system of an adult semiterrestrial crab. Cell and Tissue Research, 2021, 384, 73-85.	2.9	1
5	Retinal Genomic Fabric Remodeling after Optic Nerve Injury. Genes, 2021, 12, 403.	2.4	4
6	Mitotherapy: Unraveling a Promising Treatment for Disorders of the Central Nervous System and Other Systemic Conditions. Cells, 2021, 10, 1827.	4.1	15
7	Dissociation of genotype-dependent cognitive and motor behavior in a strain of aging mice devoid of the prion protein. Behavioural Brain Research, 2021, 411, 113386.	2.2	2

0	Guidelines for the use an	nd interpretation of	assays for monitoring	g autophagy (4th)	Tj ETQq() 0 0 rgBT	Overlock	2 10 Jf 50	462 Td (ec	litio
~ ~							0		91	1.430	

9	Substrain-related dependence of Cu(I)-ATPase activity among prion protein-null mice. Brain Research, 2020, 1727, 146550.	2.2	3
10	Neuroprotection from optic nerve injury and modulation of oxidative metabolism by transplantation of active mitochondria to the retina. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165686.	3.8	31
11	A subacute model of glaucoma based on limbal plexus cautery in pigmented rats. Scientific Reports, 2019, 9, 16286.	3.3	3
12	Retina transduction by rAAV2 after intravitreal injection: comparison between mouse and rat. Gene Therapy, 2019, 26, 479-490.	4.5	14
13	<i>De novo</i> genesis of retinal ganglion cells by targeted expression of <i>Klf4 in vivo</i> . Development (Cambridge), 2019, 146, .	2.5	18
14	Rapid plasticity of intact axons following a lesion to the visual pathways during early brain development is triggered by microglial activation. Experimental Neurology, 2019, 311, 148-161.	4.1	11
15	Evidence of Müller Glia Conversion Into Retina Ganglion Cells Using Neurogenin2. Frontiers in Cellular Neuroscience, 2018, 12, 410.	3.7	29
16	Prion (PRNP)., 2018,, 4164-4180.		1
17	rAAV8-733-Mediated Gene Transfer of CHIP/Stub-1 Prevents Hippocampal Neuronal Death in Experimental Brain Ischemia. Molecular Therapy, 2017, 25, 392-400.	8.2	17
18	The Biological Function of the Prion Protein: A Cell Surface Scaffold of Signaling Modules. Frontiers in Molecular Neuroscience, 2017, 10, 77.	2.9	105

#	Article	IF	CITATIONS
19	A roadmap for investigating the role of the prion protein in depression associated with neurodegenerative disease. Prion, 2016, 10, 131-142.	1.8	14
20	Increased p53 and decreased p21 accompany apoptosis induced by ultraviolet radiation in the nervous system of a crustacean. Aquatic Toxicology, 2016, 173, 1-8.	4.0	19
21	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
22	The prion protein selectively binds to and modulates the content of purinergic receptor P2X4R. Biochemical and Biophysical Research Communications, 2016, 472, 293-298.	2.1	6
23	Prion (PRNP). , 2016, , 1-17.		Ο
24	CHIP, a carboxy terminus HSP-70 interacting protein, prevents cell death induced by endoplasmic reticulum stress in the central nervous system. Frontiers in Cellular Neuroscience, 2015, 8, 438.	3.7	15
25	Antioxidant activity stimulated by ultraviolet radiation in the nervous system of a crustacean. Aquatic Toxicology, 2015, 160, 151-162.	4.0	12
26	Activation and function of murine primary microglia in the absence of the prion protein. Journal of Neuroimmunology, 2015, 286, 25-32.	2.3	10
27	Prion Protein Modulates Monoaminergic Systems and Depressive-like Behavior in Mice. Journal of Biological Chemistry, 2015, 290, 20488-20498.	3.4	22
28	Reply to Altered Monoaminergic Systems and Depressive-like Behavior in Congenic Prion Protein Knock-out Mice. Journal of Biological Chemistry, 2015, 290, 26351.	3.4	4
29	Advances in gene therapy technologies to treat retinitis pigmentosa. Clinical Ophthalmology, 2014, 8, 127.	1.8	62
30	A snapshot of gene therapy in Latin America. Genetics and Molecular Biology, 2014, 37, 294-298.	1.3	5
31	Pleiotropic Functions of Pituitary Adenylyl Cyclase-Activating Polypeptide on Retinal Ontogenesis: Involvement of KLF4 in the Control of Progenitor Cell Proliferation. Journal of Molecular Neuroscience, 2014, 54, 430-442.	2.3	15
32	The unconventional secretion of stress-inducible protein 1 by a heterogeneous population of extracellular vesicles. Cellular and Molecular Life Sciences, 2013, 70, 3211-3227.	5.4	52
33	Advances in Recombinant Adeno-Associated Viral Vectors for Gene Delivery. Current Gene Therapy, 2013, 13, 335-345.	2.0	21
34	The Efficiency Of Tyrosine-Mutant Adeno-Associated Viruses (AAVs) Serotype Vectors In Pulmonary Gene Therapy. , 2012, , .		0
35	Neuroimmunoendocrine Regulation of the Prion Protein in Neutrophils. Journal of Biological Chemistry, 2012, 287, 35506-35515.	3.4	23
36	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122

#	Article	IF	CITATIONS
37	PrP. , 2012, , 1488-1488.		0
38	Allosteric function and dysfunction of the prion protein. Cellular and Molecular Life Sciences, 2012, 69, 1105-1124.	5.4	53
39	Activation of c-Jun N-Terminal Kinase (JNK) during Mitosis in Retinal Progenitor Cells. PLoS ONE, 2012, 7, e34483.	2.5	10
40	Prion Protein (PRNP)., 2012,, 1462-1477.		0
41	Evidence for a role of calcineurin in the development of retinocollicular fine topography. Neuroscience Letters, 2011, 487, 47-52.	2.1	9
42	Early c-Jun N-terminal kinase-dependent phosphorylation of activating transcription factor-2 is associated with degeneration of retinal ganglion cells. Neuroscience, 2011, 180, 64-74.	2.3	6
43	Protein kinases JAK and ERK mediate protective effect of interleukin-2 upon ganglion cells of the developing rat retina. Journal of Neuroimmunology, 2011, 233, 120-126.	2.3	16
44	Paracrine Interaction between Bone Marrow-derived Stem Cells and Renal Epithelial Cells. Cellular Physiology and Biochemistry, 2011, 28, 267-278.	1.6	30
45	Metabotropic glutamate receptors transduce signals for neurite outgrowth after binding of the prion protein to laminili γ1 chain. FASEB Journal, 2011, 25, 265-279.	0.5	109
46	Platelet Activating Factor Blocks Interkinetic Nuclear Migration in Retinal Progenitors through an Arrest of the Cell Cycle at the S/G2 Transition. PLoS ONE, 2011, 6, e16058.	2.5	14
47	Pituitary adenylyl cyclaseâ€activating polypeptide controls the proliferation of retinal progenitor cells through downregulation of cyclin D1. European Journal of Neuroscience, 2010, 32, 311-321.	2.6	31
48	Caspase dependence of the death of neonatal retinal ganglion cells induced by axon damage and induction of autophagy as a survival mechanism. Brazilian Journal of Medical and Biological Research, 2010, 43, 950-956.	1.5	13
49	Terapia gênica: o que é, o que não é e o que será. Estudos Avancados, 2010, 24, 31-69.	0.5	9
50	Tissue Biology of Proliferation and Cell Death Among Retinal Progenitor Cells. , 2010, , 191-230.		0
51	Rod photoreceptor cell death is induced by okadaic acid through activation of PKC and L-type voltage-dependent Ca2+ channels and prevented by IGF-1. Neurochemistry International, 2010, 57, 128-135.	3.8	4
52	ATP controls cell cycle and induces proliferation in the mouse developing retina. International Journal of Developmental Neuroscience, 2010, 28, 63-73.	1.6	45
53	Prion Protein: Orchestrating Neurotrophic Activities. , 2010, , .		2
54	Prion Protein: Orchestrating Neurotrophic Activities. Current Issues in Molecular Biology, 2010, , .	2.4	29

#	Article	IF	CITATIONS
55	Prion protein: orchestrating neurotrophic activities. Current Issues in Molecular Biology, 2010, 12, 63-86.	2.4	81
56	Reciprocal remodeling upon binding of the prion protein to its signaling partner hop/STII. FASEB Journal, 2009, 23, 4308-4316.	0.5	19
57	Does the use of recombinant AAV5 in pulmonary gene therapy lead to lung damage?. Respiratory Physiology and Neurobiology, 2009, 168, 203-209.	1.6	4
58	Interleukinâ€4 blocks thapsigarginâ€induced cell death in rat rod photoreceptors: Involvement of cAMP/PKA pathway. Journal of Neuroscience Research, 2009, 87, 2167-2174.	2.9	13
59	Ras pathway activation in gliomas: a strategic target for intranasal administration of perillyl alcohol. Archivum Immunologiae Et Therapiae Experimentalis, 2008, 56, 267-276.	2.3	42
60	A role for CK2 upon interkinetic nuclear migration in the cell cycle of retinal progenitor cells. Developmental Neurobiology, 2008, 68, 620-631.	3.0	21
61	DNA damage-induced cell death: lessons from the central nervous system. Cell Research, 2008, 18, 17-26.	12.0	123
62	Interleukin-4 blocks proliferation of retinal progenitor cells and increases rod photoreceptor differentiation through distinct signaling pathways. Journal of Neuroimmunology, 2008, 196, 82-93.	2.3	20
63	Does the use of recombinant AAV2 in pulmonary gene therapy damage lung function?. Respiratory Physiology and Neurobiology, 2008, 160, 91-98.	1.6	5
64	Nuclear proteasomal degradation and cytoplasmic retention underlie early nuclear exclusion of transcription factor Max upon axon damage. Experimental Neurology, 2008, 213, 202-209.	4.1	4
65	Physiology of the Prion Protein. Physiological Reviews, 2008, 88, 673-728.	28.8	523
66	Endocytosis of Prion Protein Is Required for ERK1/2 Signaling Induced by Stress-Inducible Protein 1. Journal of Neuroscience, 2008, 28, 6691-6702.	3.6	86
67	Development of a Ligand Blot Assay Using Biotinylated Live Cells. Journal of Biomolecular Screening, 2007, 12, 1006-1010.	2.6	5
68	Signaling induced by hop/STI-1 depends on endocytosis. Biochemical and Biophysical Research Communications, 2007, 358, 620-625.	2.1	21
69	Hop/STI1 modulates retinal proliferation and cell death independent of PrPC. Biochemical and Biophysical Research Communications, 2007, 361, 474-480.	2.1	21
70	Antifungal Pisum sativum Defensin 1 Interacts with Neurospora crassa Cyclin F Related to the Cell Cycle. Biochemistry, 2007, 46, 987-996.	2.5	153
71	STI1 promotes glioma proliferation through MAPK and PI3K pathways. Glia, 2007, 55, 1690-1698.	4.9	83
72	A conserved domain of the gp85/trans-sialidase family activates host cell extracellular signal-regulated kinase and facilitates Trypanosoma cruzi infection. Experimental Cell Research, 2007, 313, 210-218.	2.6	45

#	Article	lF	CITATIONS
73	Glial-derived neurotrophic factor (GDNF) prevents ethanol (EtOH) induced B92 glial cell death by both PI3K/AKT and MEK/ERK signaling pathways. Brain Research Bulletin, 2006, 71, 116-126.	3.0	39
74	Requirement of p38 stress-activated MAP kinase for cell death in the developing retina depends on the stage of cell differentiation. Neurochemistry International, 2006, 49, 494-499.	3.8	7
75	Programmed cell death. , 2006, , 208-241.		3
76	Glutamate regulates retinal progenitors cells proliferation during development. European Journal of Neuroscience, 2006, 24, 969-980.	2.6	34
77	Apoptotic effect of fludarabine is independent of expression of IAPs in B-cell chronic lymphocytic leukemia. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 277-285.	4.9	21
78	Neuroprotection by cAMP. Advances in Experimental Medicine and Biology, 2006, 557, 164-176.	1.6	17
79	NMDA receptor activation modulates programmed cell death during early post-natal retinal development: a BDNF-dependent mechanism. Journal of Neurochemistry, 2005, 95, 244-253.	3.9	21
80	Control of programmed cell death by neurotransmitters and neuropeptides in the developing mammalian retina. Progress in Retinal and Eye Research, 2005, 24, 457-491.	15.5	46
81	Phagocytosis of apoptotic cells: a matter of balance. Cellular and Molecular Life Sciences, 2005, 62, 1532-1546.	5.4	46
82	Interaction of Cellular Prion and Stress-Inducible Protein 1 Promotes Neuritogenesis and Neuroprotection by Distinct Signaling Pathways. Journal of Neuroscience, 2005, 25, 11330-11339.	3.6	239
83	Neuritogenesis and neuronal differentiation promoted by 2,4â€dinitrophenol, a novel antiâ€amyloidogenic compound. FASEB Journal, 2005, 19, 1627-1636.	0.5	42
84	Rapid and long-term plasticity in the neonatal and adult retinotectal pathways following a retinal lesion. Brain Research Bulletin, 2005, 66, 128-134.	3.0	38
85	Modulation of the expression of the transcription factor Max in rat retinal ganglion cells by a recombinant adeno-associated viral vector. Brazilian Journal of Medical and Biological Research, 2005, 38, 375-379.	1.5	4
86	Biosynthesis and metabolism of sulfated glycosaminoglycans during Drosophila melanogaster development. Glycobiology, 2004, 14, 529-536.	2.5	17
87	Programmed cell deaths. Apoptosis and alternative deathstyles. FEBS Journal, 2004, 271, 1638-1650.	0.2	250
88	Radiation-induced apoptosis in developing mouse retina exhibits dose-dependent requirement for ATM phosphorylation of p53. Cell Death and Differentiation, 2004, 11, 494-502.	11.2	59
89	PrP ^c on the road: trafficking of the cellular prion protein. Journal of Neurochemistry, 2004, 88, 769-781.	3.9	88
90	Early nuclear exclusion of the transcription factor max is associated with retinal ganglion cell death independent of caspase activity. Journal of Cellular Physiology, 2004, 198, 179-187.	4.1	12

#	Article	IF	CITATIONS
91	The cellular prion protein modulates phagocytosis and inflammatory response. Journal of Leukocyte Biology, 2004, 77, 238-246.	3.3	99
92	Hydrogen peroxide induces caspase activation and programmed cell death in the amitochondrial Tritrichomonas foetus. Histochemistry and Cell Biology, 2003, 120, 129-141.	1.7	45
93	Changing sensitivity to cell death during development of retinal photoreceptors. Journal of Neuroscience Research, 2003, 74, 875-883.	2.9	24
94	Selective involvement of the PI3K/PKB/bad pathway in retinal cell death. Journal of Neurobiology, 2003, 56, 171-177.	3.6	14
95	Towards cellular receptors for prions. Reviews in Medical Virology, 2003, 13, 399-408.	8.3	51
96	Major glycosaminoglycan species in the developing retina: synthesis, tissue distribution and effects upon cell death. Experimental Eye Research, 2003, 77, 157-165.	2.6	21
97	Alternative Programs of Cell Death in Developing Retinal Tissue. Journal of Biological Chemistry, 2003, 278, 41938-41946.	3.4	66
98	Herbimycin A induces sympathetic neuron survival and protects against hypoxia. NeuroReport, 2003, 14, 2397-2401.	1.2	4
99	Gap Junctions Mediate Bystander Cell Death in Developing Retina. Journal of Neuroscience, 2003, 23, 6413-6422.	3.6	116
100	Pituitary Adenylyl Cyclase-activating Polypeptide Prevents Induced Cell Death in Retinal Tissue through Activation of Cyclic AMP-dependent Protein Kinase. Journal of Biological Chemistry, 2002, 277, 16075-16080.	3.4	60
101	Structure of laminin substrate modulates cellular signaling for neuritogenesis. Journal of Cell Science, 2002, 115, 4867-4876.	2.0	77
102	Apoptosis Underlies Immunopathogenic Mechanisms in Acute Silicosis. American Journal of Respiratory Cell and Molecular Biology, 2002, 27, 78-84.	2.9	64
103	Cellular prion protein: on the road for functions. FEBS Letters, 2002, 512, 25-28.	2.8	123
104	Activation of p38 mitogen-activated protein kinase during normal mitosis in the developing retina. Neuroscience, 2002, 112, 583-591.	2.3	32
105	Cell death in the inner nuclear layer of the retina is modulated by BDNF. Developmental Brain Research, 2002, 139, 325-330.	1.7	32
106	Differential effects of cyclin-dependent kinase blockers upon cell death in the developing retina. Brain Research, 2002, 947, 78-83.	2.2	9
107	Sympathetic neuronal survival induced by retinal trophic factors. Journal of Neurobiology, 2002, 50, 13-23.	3.6	30
108	Evidence for an Antiapoptotic Role of Dopamine in Developing Retinal Tissue. Journal of Neurochemistry, 2002, 73, 485-492.	3.9	43

#	Article	IF	CITATIONS
109	Cytoplasmic c-Jun N-terminal immunoreactivity: a hallmark of retinal apoptosis. Cellular and Molecular Neurobiology, 2002, 22, 711-726.	3.3	5
110	Cellular prion protein transduces neuroprotective signals. EMBO Journal, 2002, 21, 3317-3326.	7.8	320
111	Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO Journal, 2002, 21, 3307-3316.	7.8	374
112	Depletion of cortical target induced by prenatal ionizing irradiation: effects on the lateral geniculate nucleus and on the retinofugal pathways. International Journal of Developmental Neuroscience, 2001, 19, 475-483.	1.6	4
113	Effects of prenatal ionizing irradiation on the development of the ganglion cell layer of the mouse retina. International Journal of Developmental Neuroscience, 2001, 19, 469-473.	1.6	9
114	Paracrine neuroprotective effect of nitric oxide in the developing retina. Journal of Neurochemistry, 2001, 76, 1233-1241.	3.9	16
115	Differentiation-dependent sensitivity to cell death induced in the developing retina by inhibitors of the ubiquitin-proteasome proteolytic pathway. European Journal of Neuroscience, 2001, 13, 1938-1944.	2.6	10
116	FAS Ligand Triggers Pulmonary Silicosis. Journal of Experimental Medicine, 2001, 194, 155-164.	8.5	106
117	Laminin modulates neuritogenesis of developing rat retinal ganglion cells through a protein kinase C-dependent pathway. , 2000, 60, 291-301.		8
118	Evidence that the bifunctional redox factor / AP endonuclease Ref-1 is an anti-apoptotic protein associated with differentiation in the developing retina. Cell Death and Differentiation, 2000, 7, 272-281.	11.2	32
119	The anti-death league: associative control of apoptosis in developing retinal tissue. Brain Research Reviews, 2000, 32, 146-158.	9.0	29
120	Chloramphenicol induces apoptosis in the developing brain. Neuropharmacology, 2000, 39, 1673-1679.	4.1	5
121	Tissue Biology of Apoptosis: Refâ€1 and Cell Differentiation in the Developing Retina. Annals of the New York Academy of Sciences, 2000, 926, 64-78.	3.8	8
122	Selective sensitivity of early postmitotic retinal cells to apoptosis induced by inhibition of protein synthesis. European Journal of Neuroscience, 1999, 11, 4349-4356.	2.6	34
123	Activation of NMDA receptors protects against glutamate neurotoxicity in the retina: evidence for the involvement of neurotrophins. Brain Research, 1999, 827, 79-92.	2.2	53
124	Apoptosis in developing retinal tissue. Progress in Retinal and Eye Research, 1999, 18, 133-165.	15.5	152
125	BDNF and NT-4 differentially modulate neurite outgrowth in developing retinal ganglion cells. Journal of Neuroscience Research, 1999, 57, 759-769.	2.9	58
126	BDNF and NTâ€4 differentially modulate neurite outgrowth in developing retinal ganglion cells. Journal of Neuroscience Research, 1999, 57, 759-769.	2.9	2

Rafael Linden

#	Article	IF	CITATIONS
127	Nuclear exclusion of transcription factors associated with apoptosis in developing nervous tissue. Brazilian Journal of Medical and Biological Research, 1999, 32, 813-820.	1.5	5
128	Developmentally regulated release of intraretinal neurotrophic factorsin vitro. International Journal of Developmental Neuroscience, 1997, 15, 239-255.	1.6	24
129	Protein kinases selectively modulate apoptosis in the developing retina in vitro. Neurochemistry International, 1997, 31, 217-227.	3.8	21
130	Target and afferents interact to control developmental cell death in the mesencephalic parabigeminal nucleus of the rat. Journal of Neuroscience Research, 1996, 45, 174-182.	2.9	3
131	Expression of alpha-1 integrin subunit in the mammalian retina. Cell Biology International, 1994, 18, 211-214.	3.0	3
132	Development of abnormal lamination and binocular segregation in the retinotectal pathways of the rat. Developmental Brain Research, 1994, 82, 35-44.	1.7	26
133	The survival of developing neurons: A review of afferent control. Neuroscience, 1994, 58, 671-682.	2.3	175
134	Trophic Factors Produced by Retinal Cells Increase the Survival of Retinal Ganglion CellsIn Vitro. European Journal of Neuroscience, 1993, 5, 1181-1188.	2.6	67
135	Neuritogenesis of retinal ganglion cells is differentially promoted by target extract. Brain Research, 1993, 632, 303-307.	2.2	6
136	Dendritic competition in the developing retina: Ganglion cell density gradients and laterally displaced dendrites. Visual Neuroscience, 1993, 10, 313-324.	1.0	22
137	Dendritic Competition: A Principle of Retinal Development. , 1992, , 86-103.		4
138	Evidence that the relative densities of afferents from both eyes control laminar distribution and binocular segregation of retinotectal projections in rats. Developmental Brain Research, 1991, 60, 9-17.	1.7	10
139	Control of neuronal survival by anomalous targets in the developing brain. Journal of Comparative Neurology, 1990, 294, 594-606.	1.6	5
140	Cell death and interocular interactions among retinofugal axons: lack of binocularly matched specificity. Developmental Brain Research, 1990, 56, 198-204.	1.7	16
141	Afferent control of neuron numbers in the developing brain. Developmental Brain Research, 1988, 44, 291-295.	1.7	24
142	Displaced amacrine cells in the ganglion cell layer of the hamster retina. Vision Research, 1987, 27, 1071-1076.	1.4	31
143	Displaced ganglion cells in the retina of the rat. Journal of Comparative Neurology, 1987, 258, 138-143.	1.6	35
144	Dual control by targets and afferents of developmental neuronal death in the mammalian central nervous system: A study in the parabigeminal nucleus of the rat. Journal of Comparative Neurology, 1987, 266, 141-149.	1.6	41

#	Article	IF	CITATIONS
145	Mononuclear phagocytes in the retina of developing rats. Histochemistry, 1986, 85, 335-339.	1.9	27
146	Transient populations of presumptive macrophages in the brain of the developing hamster, as indicated by endocytosis of blood-borne horseradish peroxidase. Neuroscience, 1985, 15, 1203-1215.	2.3	25
147	Evidence for differential effects of terminal and dendritic competition upon developmental neuronal death in the retina. Neuroscience, 1985, 15, 853-868.	2.3	49
148	Observations on postnatal neurogenesis in the superior colliculus and the pretectum in the opossum. Developmental Brain Research, 1984, 13, 241-249.	1.7	16
149	Retrograde and anterograde-transneuronal degeneration in the parabigeminal nucleus following tectal lesions in developing rats. Journal of Comparative Neurology, 1983, 218, 270-281.	1.6	52
150	Postnatal changes in retinal ganglion cell and optic axon populations in the pigmented rat. Journal of Comparative Neurology, 1983, 219, 356-368.	1.6	422
151	Massive retinotectal projection in rats. Brain Research, 1983, 272, 145-149.	2.2	298
152	Ganglion cell death within the developing retina: A regulatory role for retinal dendrites?. Neuroscience, 1982, 7, 2813-2827.	2.3	134
153	Evidence for dendritic competition in the developing retina. Nature, 1982, 297, 683-685.	27.8	342
154	The pretectal complex in the opossum: projections from the striate cortex and correlation with retinal terminal fields. Brain Research, 1981, 207, 267-277.	2.2	25
155	Receptive field properties of single units in the opossum striate cortex. Brain Research, 1976, 104, 197-219.	2.2	31
156	Receptive fields in the visual cortex of the opossum. Brain Research, 1973, 63, 362-367.	2.2	15
157	Prion protein. The AFCS-nature Molecule Pages, 0, , .	0.2	3