Sergey Paltsev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8754261/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Indirect Emissions from Biofuels: How Important?. Science, 2009, 326, 1397-1399.	12.6	494
2	Health damages from air pollution in China. Global Environmental Change, 2012, 22, 55-66.	7.8	360
3	The future of food demand: understanding differences in global economic models. Agricultural Economics (United Kingdom), 2014, 45, 51-67.	3.9	357
4	The future of global water stress: An integrated assessment. Earth's Future, 2014, 2, 341-361.	6.3	155
5	Natural gas pricing reform in China: Getting closer to a market system?. Energy Policy, 2015, 86, 43-56.	8.8	111
6	Hard-to-Abate Sectors: The role of industrial carbon capture and storage (CCS) in emission mitigation. Applied Energy, 2021, 300, 117322.	10.1	109
7	Using Land To Mitigate Climate Change: Hitting the Target, Recognizing the Trade-offs. Environmental Science & Technology, 2012, 46, 5672-5679.	10.0	106
8	Marginal Abatement Costs and Marginal Welfare Costs for Greenhouse Gas Emissions Reductions: Results from the EPPA Model. Environmental Modeling and Assessment, 2012, 17, 325-336.	2.2	97
9	Technology and technical change in the MIT EPPA model. Energy Economics, 2006, 28, 610-631.	12.1	86
10	The future of U.S. natural gas production, use, and trade. Energy Policy, 2011, 39, 5309-5321.	8.8	86
11	Carbon co-benefits of tighter SO2 and NOx regulations in China. Global Environmental Change, 2013, 23, 1648-1661.	7.8	83
12	Measuring welfare loss caused by air pollution in Europe: A CGE analysis. Energy Policy, 2010, 38, 5059-5071.	8.8	81
13	Potential Land Use Implications of a Global Biofuels Industry. Journal of Agricultural and Food Industrial Organization, 2007, 5, .	1.3	80
14	Contribution of Anaerobic Digesters to Emissions Mitigation and Electricity Generation Under U.S. Climate Policy. Environmental Science & Technology, 2011, 45, 6735-6742.	10.0	77
15	Analysis of climate policy targets under uncertainty. Climatic Change, 2012, 112, 569-583.	3.6	72
16	The Influence of Shale Gas on U.S. Energy and Environmental Policy. Economics of Energy and Environmental Policy, 2012, 1, .	1.4	71
17	Synergy between pollution and carbon emissions control: Comparing China and the United States. Energy Economics, 2014, 46, 186-201.	12.1	69
18	The impact of the European Union Emissions Trading Scheme on US aviation. Journal of Air Transport Management, 2012, 19, 36-41.	4.5	68

#	Article	IF	CITATIONS
19	Developing a Consistent Database for Regional Geologic CO2 Storage Capacity Worldwide. Energy Procedia, 2017, 114, 4697-4709.	1.8	67
20	The cost of CO2 transport and storage in global integrated assessment modeling. International Journal of Greenhouse Gas Control, 2021, 109, 103367.	4.6	64
21	Toward integrated assessment of environmental change: air pollution health effects in the USA. Climatic Change, 2008, 88, 59-92.	3.6	63
22	The cost of climate policy in the United States. Energy Economics, 2009, 31, S235-S243.	12.1	63
23	Shale gas production: potential versus actual greenhouse gas emissions. Environmental Research Letters, 2012, 7, 044030.	5.2	63
24	Prospects for plug-in hybrid electric vehicles in the United States and Japan: A general equilibrium analysis. Transportation Research, Part A: Policy and Practice, 2010, 44, 620-641.	4.2	62
25	Scenarios for Russia's natural gas exports to 2050. Energy Economics, 2014, 42, 262-270.	12.1	62
26	The complicated geopolitics of renewable energy. Bulletin of the Atomic Scientists, 2016, 72, 390-395.	0.6	62
27	Forward-looking versus recursive-dynamic modeling in climate policy analysis: A comparison. Economic Modelling, 2009, 26, 1341-1354.	3.8	61
28	Long-term economic modeling for climate change assessment. Economic Modelling, 2016, 52, 867-883.	3.8	59
29	Autonomous efficiency improvement or income elasticity of energy demand: Does it matter?. Energy Economics, 2008, 30, 2785-2798.	12.1	55
30	The economics of bioenergy with carbon capture and storage (BECCS) deployment in a 1.5°C or 2°C world. Global Environmental Change, 2021, 68, 102262.	7.8	53
31	Integrated economic and climate projections for impact assessment. Climatic Change, 2015, 131, 21-33.	3.6	52
32	Toward a consistent modeling framework to assess multi-sectoral climate impacts. Nature Communications, 2018, 9, 660.	12.8	50
33	Limited trading of emissions permits as a climate cooperation mechanism? US–China and EU–China examples. Energy Economics, 2016, 58, 95-104.	12.1	45
34	Health co-benefits of sub-national renewable energy policy in the US. Environmental Research Letters, 2019, 14, 085012.	5.2	45
35	Should a vehicle fuel economy standard be combined with an economy-wide greenhouse gas emissions constraint? Implications for energy and climate policy in the United States. Energy Economics, 2013, 36, 322-333.	12.1	44
36	Assessment of US GHG cap-and-trade proposals. Climate Policy, 2008, 8, 395-420.	5.1	42

#	Article	IF	CITATIONS
37	COST CONCEPTS FOR CLIMATE CHANGE MITIGATION. Climate Change Economics, 2013, 04, 1340003.	5.0	42
38	The role of China in mitigating climate change. Energy Economics, 2012, 34, S444-S450.	12.1	41
39	Valuing climate impacts in integrated assessment models: the MIT IGSM. Climatic Change, 2013, 117, 561-573.	3.6	39
40	Applying engineering and fleet detail to represent passenger vehicle transport in a computable general equilibrium model. Economic Modelling, 2013, 30, 295-305.	3.8	37
41	Integrated assessment model diagnostics: key indicators and model evolution. Environmental Research Letters, 2021, 16, 054046.	5.2	36
42	Impacts of climate change policies worldwide on the Russian economy. Climate Policy, 2020, 20, 1242-1256.	5.1	35
43	Impacts of China's emissions trading schemes on deployment of power generation with carbon capture and storage. Energy Economics, 2019, 81, 848-858.	12.1	33
44	Representing the costs of low-carbon power generation in multi-region multi-sector energy-economic models. International Journal of Greenhouse Gas Control, 2019, 87, 170-187.	4.6	31
45	Baseline projections for Latin America: base-year assumptions, key drivers and greenhouse emissions. Energy Economics, 2016, 56, 499-512.	12.1	30
46	Climate change policy in Brazil and Mexico: Results from the MIT EPPA model. Energy Economics, 2016, 56, 600-614.	12.1	30
47	Turkish energy sector development and the Paris Agreement goals: A CGE model assessment. Energy Policy, 2018, 122, 84-96.	8.8	30
48	Will Border Carbon Adjustments Work?. B E Journal of Economic Analysis and Policy, 2011, 11, .	0.9	29
49	Sharing the burden of GHG reductions. , 2009, , 753-785.		28
50	WHAT TO EXPECT FROM SECTORAL TRADING: A US-CHINA EXAMPLE. Climate Change Economics, 2011, 02, 9-26.	5.0	27
51	Global CO2 impacts of light-duty electric vehicles. Transportation Research, Part D: Transport and Environment, 2020, 87, 102524.	6.8	27
52	Reducing CO2 from cars in the European Union. Transportation, 2018, 45, 573-595.	4.0	26
53	The impacts of the Brazilian NDC and their contribution to the Paris agreement on climate change. Environment and Development Economics, 2019, 24, 395-412.	1.5	26
54	Scenarios with MIT integrated global systems model: significant global warming regardless of different approaches. Climatic Change, 2011, 104, 515-537.	3.6	25

#	Article	IF	CITATIONS
55	Energy scenarios: the value and limits of scenario analysis. Wiley Interdisciplinary Reviews: Energy and Environment, 2017, 6, e242.	4.1	25
56	Distributional Implications of Alternative U.S. Greenhouse Gas Control Measures. B E Journal of Economic Analysis and Policy, 2010, 10, .	0.9	23
57	The hedge value of international emissions trading under uncertainty. Energy Policy, 2010, 38, 1787-1796.	8.8	22
58	The prospects for coal-to-liquid conversion: A general equilibrium analysis. Energy Policy, 2011, 39, 4713-4725.	8.8	22
59	The economic viability of gas-to-liquids technology and the crude oil–natural gas price relationship. Energy Economics, 2017, 63, 13-21.	12.1	19
60	Representing Socioâ€Economic Uncertainty in Human System Models. Earth's Future, 2022, 10, .	6.3	19
61	Proposed Vehicle Fuel Economy Standards in the United States for 2017 to 2025. Transportation Research Record, 2012, 2287, 132-139.	1.9	18
62	Costs of reducing GHG emissions in Brazil. Climate Policy, 2014, 14, 209-223.	5.1	18
63	SCENARIOS FOR THE DEPLOYMENT OF CARBON CAPTURE AND STORAGE IN THE POWER SECTOR IN A PORTFOLIO OF MITIGATION OPTIONS. Climate Change Economics, 2021, 12, .	5.0	17
64	The Canadian oil sands industry under carbon constraints. Energy Policy, 2012, 50, 540-550.	8.8	16
65	Climate change and developing country growth: the cases of Malawi, Mozambique, and Zambia. Climatic Change, 2019, 154, 335-349.	3.6	16
66	Food, Fuel, Forests, and the Pricing of Ecosystem Services. American Journal of Agricultural Economics, 2011, 93, 342-348.	4.3	15
67	Distributional Impacts of a U.S. Greenhouse Gas Policy. , 2010, , 52-107.		13
68	Climate Change Taxes and Energy Efficiency in Japan. Environmental and Resource Economics, 2007, 37, 377-410.	3.2	11
69	Use of natural gas and oil as a source of feedstocks. Energy Economics, 2020, 92, 104984.	12.1	11
70	How (and why) do climate policy costs differ among countries?. , 0, , 282-293.		9
71	The Role of Non-CO2 GHGs in Climate Policy: Analysis Using the MIT IGSM. Energy Journal, 2006, 27, 503-520.	1.7	9
72	Analysis of the Coal Sector under Carbon Constraints. Journal of Policy Modeling, 2009, 31, 404-424.	3.1	8

#	Article	IF	CITATIONS
73	An analysis of US greenhouse gas cap-and-trade proposals using a forward-looking economic model. Environment and Development Economics, 2011, 16, 155-176.	1.5	8
74	Future energy: in search of a scenario reflecting current and future pressures and trends. Environmental Economics and Policy Studies, 2023, 25, 31-61.	2.0	8
75	Transport and Climate Policy Modeling the Transport Sector: The Role of Existing Fuel Taxes in Climate Policy. , 2005, , 211-238.		7
76	EUROPEAN-LED CLIMATE POLICY VERSUS GLOBAL MITIGATION ACTION: IMPLICATIONS ON TRADE, TECHNOLOGY, AND ENERGY. Climate Change Economics, 2013, 04, 1340002.	5.0	7
77	Regulatory control of vehicle and power plant emissions: how effective and at what cost?. Climate Policy, 2015, 15, 438-457.	5.1	7
78	Projecting Energy and Climate for the 21st Century. Economics of Energy and Environmental Policy, 2020, 9, .	1.4	7
79	Economic analysis of the hard-to-abate sectors in India. Energy Economics, 2022, 112, 106149.	12.1	7
80	Nuclear exit, the US energy mix, and carbon dioxide emissions. Bulletin of the Atomic Scientists, 2013, 69, 34-43.	0.6	4
81	THE FUTURE OF NATURAL GAS IN CHINA: EFFECTS OF PRICING REFORM AND CLIMATE POLICY. Climate Change Economics, 2016, 07, 1650012.	5.0	4
82	A Multisectoral Dynamic Model for Energy, Economic, and Climate Scenario Analysis. Low Carbon Economy, 2022, 13, 70-111.	1.2	4
83	Costs of Mitigating Climate Change in the United States. Annual Review of Resource Economics, 2010, 2, 257-273.	3.7	3
84	WILL GREENHOUSE GASES MITIGATION POLICIES ABROAD AFFECT THE DOMESTIC ECONOMY? THE CASE OF TAIWAN. Climate Change Economics, 2019, 10, 1950016.	5.0	3
85	The role of shale gas in shaping the U.S. long-run CO ₂ emissions. Energy and Environment, 2021, 32, 737-755.	4.6	2
86	Energy Scenarios for East Asia, 2005–2025. , 2009, , 211-242.		2
87	Emissions Pricing to Stabilize Global Climate. SSRN Electronic Journal, 0, , .	0.4	2
88	Economics and geopolitics of natural gas: Pipelines versus LNG. , 2015, , .		1
89	Air Pollution Health Effects: Toward an Integrated Assessment. Advances in Global Change Research, 2005, , 267-293.	1.6	1
90	Will using newer input–output data for general equilibrium modeling provide a better estimate for the CO2 mitigation cost?. Economic Systems Research, 2021, 33, 157-170.	2.7	0

0

#	Article	IF	CITATIONS
91	Regulatory Control of Vehicle and Power Plant Emissions: How Effective and at What Cost?. SSRN Electronic Journal, 0, , .	0.4	0

92 Distributional Implications of Alternative U.S. Greenhouse Gas Control Measures. , 2013, , .