Richard J Bodnar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8754099/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stress-induced analgesia: Neural and hormonal determinants. Neuroscience and Biobehavioral Reviews, 1980, 4, 87-100.	2.9	342
2	Morphine-6-glucuronide, a potent mu agonist. Life Sciences, 1987, 41, 2845-2849.	2.0	338
3	Dose-dependent reductions by naloxone of analgesia induced by cold-water stress. Pharmacology Biochemistry and Behavior, 1978, 8, 667-672.	1.3	302
4	Roles of gender, gonadectomy and estrous phase in the analgesic effects of intracerebroventricular morphine in rats. Pharmacology Biochemistry and Behavior, 1989, 34, 119-127.	1.3	205
5	Organismic variables and pain inhibition: Roles of gender and aging. Brain Research Bulletin, 1988, 21, 947-953.	1.4	180
6	Gender effects and central opioid analgesia. Pain, 1991, 45, 87-94.	2.0	167
7	Stress-produced analgesia and morphine-produced analgesia: Lack of cross-tolerance. Pharmacology Biochemistry and Behavior, 1978, 8, 661-666.	1.3	164
8	Interactions among aging, gender, and gonadectomy effects upon morphine antinociception in rats. Physiology and Behavior, 1993, 54, 45-53.	1.0	156
9	Endogenous opioids and feeding behavior: a 30-year historical perspective. Peptides, 2004, 25, 697-725.	1.2	151
10	Analgesia induced by cold-water stress: Attenuation following hypophysectomy. Physiology and Behavior, 1979, 23, 53-62.	1.0	131
11	Different μ receptor subtypes mediate spinal and supraspinal analgesia in mice. European Journal of Pharmacology, 1989, 168, 307-314.	1.7	125
12	General, μ and κ opioid antagonists in the nucleus accumbens alter food intake under deprivation, glucoprivic and palatable conditions. Brain Research, 1995, 700, 205-212.	1.1	118
13	Role of μ1-opiate receptors in supraspinal opiate analgesia: a microinjection study. Brain Research, 1988, 447, 25-34.	1.1	111
14	Stress-induced analgesia: Time course of pain reflex alterations following cold water swims. Bulletin of the Psychonomic Society, 1978, 11, 333-336.	0.2	110
15	μ and δ opioid synergy between the periaqueductal gray and the rostro-ventral medulla. Brain Research, 1994, 665, 85-93.	1.1	108
16	Sex differences in opioid analgesia, hyperalgesia, tolerance and withdrawal: Central mechanisms of action and roles of gonadal hormones. Hormones and Behavior, 2010, 58, 72-81.	1.0	104
17	Morphine antinociception elicited from the ventrolateral periaqueductal gray is sensitive to sex and gonadectomy differences in rats. Brain Research, 1999, 821, 224-230.	1.1	103
18	Opiate and non-opiate mechanisms of stress-induced analgesia: Cross-tolerance between stressors. Pharmacology Biochemistry and Behavior, 1979, 10, 761-765.	1.3	102

#	Article	IF	CITATIONS
19	Modulation of endomorphin-2-induced analgesia by dipeptidyl peptidase IV. Brain Research, 1999, 815, 278-286.	1.1	100
20	Neuropharmacological and Neuroendocrine Substrates of Stress-Induced Analgesia. Annals of the New York Academy of Sciences, 1986, 467, 345-360.	1.8	98
21	Inbred mouse strain survey of sucrose intake. Physiology and Behavior, 2005, 85, 546-556.	1.0	98
22	Medullary μ and δ opioid receptors modulate mesencephalic morphine analgesia in rats. Brain Research, 1993, 624, 151-161.	1.1	88
23	Central opioid receptor subtype antagonists differentially alter sucrose and deprivation-induced water intake in rats. Brain Research, 1992, 589, 291-301.	1.1	87
24	Gender differences in two forms of cold-water swim analgesia. Physiology and Behavior, 1986, 37, 893-897.	1.0	85
25	Endogenous opiates and behavior: 2012. Peptides, 2013, 50, 55-95.	1.2	85
26	Suppression of nocturnal, palatable and glucoprivic intake in rats by the κ opioid antagonist, nor-binaltorphamine. Brain Research, 1990, 534, 313-316.	1.1	82
27	Reversal of sex differences in morphine analgesia elicited from the ventrolateral periaqueductal gray in rats by neonatal hormone manipulations. Brain Research, 2002, 929, 1-9.	1.1	79
28	Involvement of opioid receptor subtypes in rat feeding behavior. Life Sciences, 1985, 36, 829-833.	2.0	75
29	Reduction by central ß-funaltrexamine of food intake in rats under freely-feeding, deprivation and glucoprivic conditions. Brain Research, 1990, 535, 101-109.	1.1	75
30	Pharmacology of Flavor Preference Conditioning in Sham-Feeding Rats. Pharmacology Biochemistry and Behavior, 1999, 64, 573-584.	1.3	75
31	Endogenous opiates and behavior: 2004. Peptides, 2005, 26, 2629-2711.	1.2	75
32	Activation of dopamine D1â€like receptors in nucleus accumbens is critical for the acquisition, but not the expression, of nutrientâ€conditioned flavor preferences in rats. European Journal of Neuroscience, 2008, 27, 1525-1533.	1.2	75
33	Dopamine and learned food preferences. Physiology and Behavior, 2011, 104, 64-68.	1.0	74
34	Vasopressin analgesia: Specificity of action and non-opioid effects. Peptides, 1984, 5, 747-756.	1.2	73
35	Biphasic alterations of nociceptive thresholds induced by food deprivation. Physiological Psychology, 1978, 6, 391-395.	0.8	71
36	Central opioid receptor subtype antagonists differentially reduce intake of saccharin and maltose dextrin solutions in rats. Brain Research, 1993, 618, 261-270.	1.1	71

#	Article	IF	CITATIONS
37	Opioid antagonists in the periaqueductal gray inhibit morphine and β-endorphin analgesia elicited from the amygdala of rats. Brain Research, 1996, 741, 13-26.	1.1	71
38	Endogenous opiates and behavior: 2005. Peptides, 2006, 27, 3391-3478.	1.2	71
39	Naloxazone and pain-inhibitory systems: evidence for a collateral inhibition model. Pharmacology Biochemistry and Behavior, 1982, 17, 1175-1179.	1.3	70
40	Endogenous opiates and behavior: 2014. Peptides, 2016, 75, 18-70.	1.2	69
41	Naltrexone fails to block the acquisition or expression of a flavor preference conditioned by intragastric carbohydrate infusions. Pharmacology Biochemistry and Behavior, 2000, 67, 545-557.	1.3	68
42	Endogenous opiates and behavior: 2006. Peptides, 2007, 28, 2435-2513.	1.2	67
43	Dissociation of cold-water swin and morphine analgesia in Brattleboro rats with diabetes insipidus. Life Sciences, 1980, 26, 1581-1590.	2.0	66
44	Synergistic brainstem interactions for morphine analgesia. Brain Research, 1993, 624, 171-180.	1.1	66
45	Opioid supraspinal analgesic synergy between the amygdala and periaqueductal gray in rats. Brain Research, 1998, 779, 158-169.	1.1	66
46	D1 but not D2 dopamine receptor antagonism blocks the acquisition of a flavor preference conditioned by intragastric carbohydrate infusions. Pharmacology Biochemistry and Behavior, 2001, 68, 709-720.	1.3	66
47	Neonatal Monosodium Glutamate. Neuroendocrinology, 1980, 30, 280-284.	1.2	65
48	Modulation of gender-specific effects upon swim analgesia in gonadectomized rats. Physiology and Behavior, 1987, 40, 39-45.	1.0	65
49	Selective actions of central μ and κ opioid antagonists upon sucrose intake in sham-fed rats. Brain Research, 1995, 685, 205-210.	1.1	65
50	Serotonin receptor subtype antagonists in the medial ventral medulla inhibit mesencephalic opiate analgesia. Brain Research, 1992, 597, 331-338.	1.1	64
51	Selective opioid receptor antagonist effects upon intake of a high-fat diet in rats. Brain Research, 1990, 508, 293-296.	1.1	63
52	Multiple opioid receptors mediate feeding elicited by mu and delta opioid receptor subtype agonists in the nucleus accumbens shell in rats. Brain Research, 2000, 876, 76-87.	1.1	63
53	Alterations in food intake elicited by GABA and opioid agonists and antagonists administered into the ventral tegmental area region of rats. Physiology and Behavior, 2002, 76, 107-116.	1.0	62
54	Endogenous opiates and behavior: 2010. Peptides, 2011, 32, 2522-2552.	1.2	62

Richard J Bodnar

#	Article	IF	CITATIONS
55	Excitatory amino acid antagonists in the rostral ventromedial medulla inhibit mesencephalic morphine analgesia in rats. Pain, 1996, 64, 545-552.	2.0	61
56	2-Deoxy-D-glucose analgesia: Influences of opiate and non-opiate factors. Pharmacology Biochemistry and Behavior, 1979, 11, 297-301.	1.3	59
57	Differential effects of hypophysectomy upon analgesia induced by two glucoprivic stressors and morphine. Pharmacology Biochemistry and Behavior, 1979, 11, 303-308.	1.3	59
58	Gender-specific and gonadectomy-specific effects upon swim analgesia: Role of steroid replacement therapy. Physiology and Behavior, 1988, 44, 257-265.	1.0	57
59	Dopamine D1 and D2 antagonists reduce the acquisition and expression of flavor-preferences conditioned by fructose in rats. Pharmacology Biochemistry and Behavior, 2003, 75, 55-65.	1.3	57
60	Endogenous Opiates and Behavior: 2016. Peptides, 2018, 101, 167-212.	1.2	57
61	Endogenous opiates and behavior: 2009. Peptides, 2010, 31, 2325-2359.	1.2	55
62	Role of dopamine D1 and D2 receptors in the nucleus accumbens shell on the acquisition and expression of fructose-conditioned flavor–flavor preferences in rats. Behavioural Brain Research, 2008, 190, 59-66.	1.2	54
63	Stress-induced analgesia: Adaptation following chronic cold water swims. Bulletin of the Psychonomic Society, 1978, 11, 337-340.	0.2	53
64	Selective alterations in macronutrient intake of food-deprived or glucoprivic rats by centrally-administered opioid receptor subtype antagonists in rats. Brain Research, 1994, 657, 191-201.	1.1	53
65	Naloxone and cold-water swim analgesia: Parametric considerations and individual differences. Learning and Motivation, 1983, 14, 223-237.	0.6	52
66	Pharmacology of Flavor Preference Conditioning in Sham-Feeding Rats. Pharmacology Biochemistry and Behavior, 2000, 65, 635-647.	1.3	52
67	Naltrexone does not prevent acquisition or expression of flavor preferences conditioned by fructose in rats. Pharmacology Biochemistry and Behavior, 2004, 78, 239-246.	1.3	52
68	Central antinociceptive effects of lysine-vasopressin and an analogue. Peptides, 1982, 3, 613-617.	1.2	51
69	Ingestive behavior following central [D-Ala2, Leu5, Cys6]-Enkephalin (DALCE), a short-acting agonist and long-acting antagonist at the delta opioid receptor. Pharmacology Biochemistry and Behavior, 1991, 39, 429-436.	1.3	51
70	Pharmacology of Sucrose-Reinforced Place-Preference Conditioning. Pharmacology Biochemistry and Behavior, 2000, 65, 697-704.	1.3	51
71	Role of D1 and D2 dopamine receptors in the acquisition and expression of flavor-preference conditioning in sham-feeding rats. Pharmacology Biochemistry and Behavior, 2000, 67, 537-544.	1.3	49
72	Neuropharmacology of learned flavor preferences. Pharmacology Biochemistry and Behavior, 2010, 97, 55-62.	1.3	49

#	Article	IF	CITATIONS
73	Endogenous opiates and behavior: 2013. Peptides, 2014, 62, 67-136.	1.2	49
74	Impairments in Analgesic, Hypothermic, and Glucoprivic Stress Responses following Neonatal Monosodium Glutamate. Neuroendocrinology, 1984, 38, 438-446.	1.2	48
75	Stress and morphine analgesia: Alterations following p-chlorophenylalanine. Pharmacology Biochemistry and Behavior, 1981, 14, 645-651.	1.3	47
76	Roles of gender and gonadectomy in pilocarpine and clonidine analgesia in rats. Pharmacology Biochemistry and Behavior, 1992, 41, 153-158.	1.3	46
77	Dopamine D1â€like receptor antagonism in amygdala impairs the acquisition of glucoseâ€conditioned flavor preference in rats. European Journal of Neuroscience, 2009, 30, 289-298.	1.2	46
78	Orphan opioid receptor antisense probes block orphanin FQ-induced hyperphagia. European Journal of Pharmacology, 1998, 349, R1-R3.	1.7	45
79	Endogenous opiates and behavior: 2007. Peptides, 2008, 29, 2292-2375.	1.2	45
80	2-deoxy-D-glucose-induced decrements in operant and reflex pain thresholds. Pharmacology Biochemistry and Behavior, 1978, 9, 543-549.	1.3	43
81	Antagonism of stress-induced analgesia by D-phenylalanine, an anti-enkephalinase. Pharmacology Biochemistry and Behavior, 1980, 13, 829-833.	1.3	43
82	Reduction in cold-water swim analgesia following hypothalamic paraventricular nucleus lesions. Physiology and Behavior, 1987, 39, 727-731.	1.0	43
83	Endogenous opiates and behavior: 2003. Peptides, 2004, 25, 2205-2256.	1.2	43
84	Reciprocal opioid–opioid interactions between the ventral tegmental area and nucleus accumbens regions in mediating μ agonist-induced feeding in rats. Peptides, 2005, 26, 621-629.	1.2	43
85	Genetic variance contributes to ingestive processes: A survey of eleven inbred mouse strains for fat (Intralipid) intake. Physiology and Behavior, 2007, 90, 82-94.	1.0	43
86	Acquisition of glucose-conditioned flavor preference requires the activation of dopamine D1-like receptors within the medial prefrontal cortex in rats. Neurobiology of Learning and Memory, 2010, 94, 214-219.	1.0	43
87	Reductions in body weight following chronic central opioid receptor subtype antagonists during development of dietary obesity in rats. Brain Research, 1995, 678, 168-176.	1.1	42
88	Autoradiographic localization of125I[Tyr14]orphanin FQ/nociceptin and125I[Tyr10]orphanin FQ/nociceptin(1-11) binding sites in rat brain. Journal of Comparative Neurology, 2000, 423, 319-329.	0.9	42
89	Elevations in nociceptive thresholds following locus coeruleus lesions. Brain Research Bulletin, 1978, 3, 125-130.	1.4	41
90	γ-Aminobutyric acid receptor subtype antagonists differentially alter opioid-induced feeding in the shell region of the nucleus accumbens in rats. Brain Research, 2001, 906, 84-91.	1.1	41

#	Article	IF	CITATIONS
91	Interrelationships between μ opioid and melanocortin receptors in mediating food intake in rats. Brain Research, 2003, 991, 240-244.	1.1	41
92	Endogenous Opiates and Behavior: 2015. Peptides, 2017, 88, 126-188.	1.2	41
93	Chronic 2-deoxy-D-glucose treatment: Adaptation of its analgesic, but not hyperphagic properties. Pharmacology Biochemistry and Behavior, 1978, 9, 763-768.	1.3	40
94	Evaluation of opioid receptor subtype antagonist effects in the ventral tegmental area upon food intake under deprivation, glucoprivic and palatable conditions. Brain Research, 1997, 767, 8-16.	1.1	40
95	Potency ratios of morphine and morphine-6β-glucuronide analgesia elicited from the periaqueductal gray, locus coeruleus or rostral ventromedial medulla of rats. Brain Research, 1998, 799, 329-333.	1.1	40
96	Gender determinants of opioid mediation of swim analgesia in rats. Pharmacology Biochemistry and Behavior, 1988, 29, 705-709.	1.3	39
97	Supraspinal circuitry mediating opioid antinociception: Antagonist and synergy studies in multiple sites. Journal of Biomedical Science, 2000, 7, 181-194.	2.6	39
98	Opioid-Receptor Subtype Agonist-Induced Enhancements of Sucrose Intake are Dependent Upon Sucrose Concentration. Physiology and Behavior, 1997, 62, 121-128.	1.0	38
99	Evaluation of Chronic Opioid Receptor Antagonist Effects Upon Weight and Intake Measures in Lean and Obese Zucker Rats. Peptides, 1997, 18, 1201-1207.	1.2	38
100	Role of amygdala dopamine D1 and D2 receptors in the acquisition and expression of fructose-conditioned flavor preferences in rats. Behavioural Brain Research, 2009, 205, 183-190.	1.2	38
101	Pain Threshold Changes in Rats Following Central Injection of Beta-Endorphin, Met-Enkephalin, Vasopressin or Oxytocin Antisera. International Journal of Neuroscience, 1984, 24, 149-160.	0.8	36
102	Endogenous opiates and behavior: 2002. Peptides, 2003, 24, 1241-1302.	1.2	36
103	Opioid receptor subtype antagonists differentially alter GABA agonist-induced feeding elicited from either the nucleus accumbens shell or ventral tegmental area regions in rats. Brain Research, 2004, 1026, 284-294.	1.1	36
104	Age-related decrements in morphine analgesia: A parametric analysis. Neurobiology of Aging, 1986, 7, 185-191.	1.5	35
105	Endogenous opiates and behavior: 2001. Peptides, 2002, 23, 2307-2365.	1.2	35
106	Analysis of opioid receptor subtype antagonist effects upon mu opioid agonist-induced feeding elicited from the ventral tegmental area of rats. Brain Research, 2002, 929, 96-100.	1.1	35
107	Strain differences in sucrose- and fructose-conditioned flavor preferences in mice. Physiology and Behavior, 2012, 105, 451-459.	1.0	35
108	Inhibition of mesencephalic morphine analgesia by methysergide in the medial ventral medulla of rats. Physiology and Behavior, 1992, 51, 201-205.	1.0	34

#	Article	IF	CITATIONS
109	Dynorphin A1–17-Induced Feeding: Pharmacological Characterization Using Selective Opioid Antagonists and Antisense Probes in Rats. Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 513-518.	1.3	34
110	Potentiation of cold-water swim analgesia and hypothermia by clonidine. Pharmacology Biochemistry and Behavior, 1983, 19, 447-451.	1.3	33
111	Blockade of morphine analgesia by both pertussis and cholera toxins in the periaqueductal gray and locus coeruleus. Brain Research, 1990, 529, 324-328.	1.1	33
112	Mediation of insulin hyperphagia by specific central opiate receptor antagonists. Brain Research, 1991, 547, 315-318.	1,1	32
113	Endogenous opiates and behavior: 2008. Peptides, 2009, 30, 2432-2479.	1.2	32
114	Synergistic analgesic interactions between the periaqueductal gray and the locus coeruleus. Brain Research, 1991, 558, 224-230.	1.1	31
115	Involvement of mu1 and mu2 opioid receptor subtypes in tail-pinch feeding in rats. Physiology and Behavior, 1993, 53, 603-605.	1.0	31
116	Dopamine signaling in the medial prefrontal cortex and amygdala is required for the acquisition of fructose-conditioned flavor preferences in rats. Behavioural Brain Research, 2012, 233, 500-507.	1.2	31
117	Excitatory amino acid receptor subtype agonists induce feeding in the nucleus accumbens shell in rats: opioid antagonist actions and interactions with μ-opioid agonists. Brain Research, 2001, 921, 86-97.	1.1	29
118	Endogenous opiates and behavior: 2011. Peptides, 2012, 38, 463-522.	1.2	29
119	Differential sensitivity of opioid-induced feeding to naloxone and naloxonazine. Psychopharmacology, 1988, 94, 336-41.	1.5	28
120	Antagonism of morphine analgesia by nonopioid cold-water swim analgesia: Direct evidence for collateral inhibition. Neuroscience and Biobehavioral Reviews, 1990, 14, 1-7.	2.9	28
121	Genetic variance contributes to naltrexone-induced inhibition of sucrose intake in inbred and outbred mouse strains. Brain Research, 2007, 1135, 136-145.	1.1	28
122	Elimination of vasopressin analgesia following lesions placed in the rat hypothalamic paraventricular nucleus. Peptides, 1986, 7, 111-117.	1.2	27
123	Comparison of behaviors elicited by electrical brain stimulation in dorsal brain stem and hypothalamus of rats Journal of Comparative and Physiological Psychology, 1975, 88, 816-828.	1.8	26
124	Analysis of sex and gonadectomy differences in \hat{l}^2 -endorphin antinociception elicited from the ventrolateral periaqueductal gray in rats. European Journal of Pharmacology, 2000, 392, 157-161.	1.7	26
125	Differential actions of dopamine receptor antagonism in rats upon food intake elicited by either mercaptoacetate or exposure to a palatable high-fat diet. Pharmacology Biochemistry and Behavior, 2001, 69, 201-208.	1.3	26
126	Naloxone and serotonin receptor subtype antagonists: Interactive effects upon deprivation-induced intake. Pharmacology Biochemistry and Behavior, 1991, 38, 605-610.	1.3	25

#	Article	IF	CITATIONS
127	Lateral hypothalamus dopamine D1-like receptors and glucose-conditioned flavor preferences in rats. Neurobiology of Learning and Memory, 2009, 92, 464-467.	1.0	25
128	Analysis of dopamine receptor antagonism upon feeding elicited by mu and delta opioid agonists in the shell region of the nucleus accumbens. Brain Research, 2000, 877, 65-72.	1.1	23
129	c-Fos induction in mesotelencephalic dopamine pathway projection targets and dorsal striatum following oral intake of sugars and fats in rats. Brain Research Bulletin, 2015, 111, 9-19.	1.4	23
130	Endogenous opioid modulation of food intake and body weight: Implications for opioid influences upon motivation and addiction. Peptides, 2019, 116, 42-62.	1.2	23
131	Escape from rewarding brain stimulation of dorsal brainstem and hypothalamus. Physiology and Behavior, 1973, 11, 589-591.	1.0	22
132	Neuroleptic and analgesic interactions upon pain and activity measures. Pharmacology Biochemistry and Behavior, 1982, 16, 411-416.	1.3	22
133	Reduction in opioid and non-opioid forms of swim analgesia by 5-HT2 receptor antagonists. Brain Research, 1989, 500, 231-240.	1.1	22
134	Naloxone benzoylhydrazone, a κ3 opioid agonist, stimulates food intake in rats. Brain Research, 1992, 581, 311-314.	1.1	22
135	Delta and Kappa Opioid Receptor Subtypes and Ingestion: Antagonist and Glucoprivic Effects. Pharmacology Biochemistry and Behavior, 1997, 56, 353-361.	1.3	22
136	Alterations in swim stress-induced analgesia and hypothermia following serotonergic or NMDA antagonists in the rostral ventromedial medulla of rats. Physiology and Behavior, 1998, 64, 219-225.	1.0	22
137	Mercaptoacetate induces feeding through central opioid-mediated mechanisms in rats. Brain Research, 2000, 864, 240-251.	1.1	22
138	Morphine and morphine-6β-glucuronide-induced feeding are differentially reduced by G-protein α-subunit antisense probes in rats. Brain Research, 2000, 876, 62-75.	1.1	22
139	Genetic variance contributes to dopamine receptor antagonist-induced inhibition of sucrose intake in inbred and outbred mouse strains. Brain Research, 2009, 1257, 40-52.	1.1	22
140	Opioid receptor antagonism in the nucleus accumbens fails to block the expression of sugar-conditioned flavor preferences in rats. Pharmacology Biochemistry and Behavior, 2010, 95, 56-62.	1.3	22
141	Intracranial self-stimulation site specificity: The myth of current spread. Brain Research Bulletin, 1978, 3, 349-356.	1.4	21
142	Analgesic responses following adrenal demedullation and peripheral catecholamine depletion. Physiology and Behavior, 1982, 29, 1105-1109.	1.0	21
143	Age-related decrements in the analgesic response to cold-water swims. Physiology and Behavior, 1986, 36, 875-880.	1.0	21
144	Actions of NMDA and cholinergic receptor antagonists in the rostral ventromedial medulla upon β-endorphin analgesia elicited from the ventrolateral periaqueductal gray. Brain Research, 1999, 829, 151-159.	1.1	21

#	Article	IF	CITATIONS
145	Chronic opioid antagonist treatment facilatates nonopioid, stress-induced analgesia. Pharmacology Biochemistry and Behavior, 1987, 27, 525-527.	1.3	20
146	Yohimbine potentiates cold-water swim analgesia: Re-evaluation of a noradrenergic role. Pharmacology Biochemistry and Behavior, 1988, 29, 83-88.	1.3	20
147	Interactions among aging, gender, and gonadectomy effects upon naloxone hypophagia in rats. Physiology and Behavior, 1993, 54, 981-992.	1.0	20
148	Differential modulation of angiotensin II and hypertonic saline-induced drinking by opioid receptor subtype antagonists in rats. Brain Research, 1994, 635, 203-210.	1.1	20
149	Feeding induced by food deprivation is differentially reduced by C-protein α-subunit antisense probes in rats. Brain Research, 2002, 955, 45-54.	1.1	20
150	GABA-A and GABA-B receptors mediate feeding elicited by the GABA-B agonist baclofen in the ventral tegmental area and nucleus accumbens shell in rats: Reciprocal and regional interactions. Brain Research, 2010, 1355, 86-96.	1.1	20
151	Potentiation of foot shock analgesia by thyrotropin releasing hormone. Peptides, 1984, 5, 635-639.	1.2	19
152	Endopeptidase 24.15 inhibition and opioid antinociception. Psychopharmacology, 1992, 106, 408-416.	1.5	19
153	Endogenous Opiates and Behavior: 2018. Peptides, 2020, 132, 170348.	1.2	19
154	Chlordiazepoxide antinociception: Cross-tolerance with opiates and with stress. Psychopharmacology, 1980, 69, 107-110.	1.5	18
155	Reversal of stress-induced analgesia by apomorphine, but not by amphetamine. Pharmacology Biochemistry and Behavior, 1980, 13, 171-175.	1.3	18
156	Naltrexone, dopamine receptor agonists and antagonists, and food intake in rats: 1. Food deprivation. Pharmacology Biochemistry and Behavior, 1994, 49, 197-204.	1.3	18
157	Analysis of central opioid receptor subtype antagonism of hypotonic and hypertonic saline intake in water-deprived rats. Brain Research Bulletin, 1995, 36, 293-300.	1.4	18
158	Different central opioid receptor subtype antagonists modify maltose dextrin and deprivation-induced water intake in sham feeding and sham drinking rats. Brain Research, 1996, 741, 300-308.	1.1	18
159	Endogenous opioids and feeding behavior: A decade of further progress (2004–2014). A Festschrift to Dr. Abba Kastin. Peptides, 2015, 72, 20-33.	1.2	18
160	Effects of muscarinic receptor antagonism upon two forms of stress-induced analgesia. Pharmacology Biochemistry and Behavior, 1986, 25, 171-179.	1.3	17
161	Interactions Between Angiotensin II and Delta Opioid Receptor Subtype Agonists Upon Water Intake in Rats. Peptides, 1997, 18, 241-245.	1.2	17
162	ESTRUS PHASE DIFFERENCES IN FEMALE RATS IN MORPHINE ANTINOCICEPTION ELICITED FROM THE VENTROLATERAL PERIAQUEDUCTAL GRAY. International Journal of Neuroscience, 2007, 117, 811-822.	0.8	17

#	Article	IF	CITATIONS
163	Glucose-conditioned flavor preference learning requires co-activation of NMDA and dopamine D1-like receptors within the amygdala. Neurobiology of Learning and Memory, 2013, 106, 95-101.	1.0	17
164	Dopamine D1 and opioid receptor antagonist-induced reductions of fructose and saccharin intake in BALB/c and SWR inbred mice. Pharmacology Biochemistry and Behavior, 2015, 131, 13-18.	1.3	17
165	Endogenous opiates and behavior: 2017. Peptides, 2020, 124, 170223.	1.2	17
166	Potentiation of cold-water swim analgesia by acute, but not chronic desipramine administration. Pharmacology Biochemistry and Behavior, 1985, 23, 749-752.	1.3	16
167	Naltrexone, serotonin receptor subtype antagonists, and glucoprivic intake: 1.2-deoxy-D-glucose. Pharmacology Biochemistry and Behavior, 1992, 42, 661-670.	1.3	16
168	Characterization of pituitary mediation of stress-induced antinociception in rats. Physiology and Behavior, 1993, 53, 769-775.	1.0	16
169	Analgesia elicited by OFQ/nociceptin and its fragments from the amygdala in rats. Brain Research, 2001, 907, 109-116.	1.1	16
170	Genetic variance contributes to dopamine and opioid receptor antagonist-induced inhibition of intralipid (fat) intake in inbred and outbred mouse strains. Brain Research, 2010, 1316, 51-61.	1.1	16
171	Simultaneous Detection of c-Fos Activation from Mesolimbic and Mesocortical Dopamine Reward Sites Following Naive Sugar and Fat Ingestion in Rats. Journal of Visualized Experiments, 2016, , .	0.2	16
172	Stress-induced analgesia: Effect of naloxone following cold water swims. Bulletin of the Psychonomic Society, 1978, 12, 125-128.	0.2	15
173	Post-natal morphine differentially affects opiate and stress analgesia in adult rats. Psychopharmacology, 1989, 98, 512-517.	1.5	15
174	Reductions in locomotor activity following central opioid receptor subtype antagonists in rats. Physiology and Behavior, 1996, 60, 833-836.	1.0	15
175	Characterization of Rat Prepro-Orphanin FQ/Nociceptin(154–181): Nociceptive Processing in Supraspinal Sites. Journal of Pharmacology and Experimental Therapeutics, 2002, 300, 257-264.	1.3	15
176	Pharmacological characterization of β-endorphin- and dynorphin A1–17-induced feeding using G-protein α-subunit antisense probes in rats. Peptides, 2002, 23, 1101-1106.	1.2	15
177	Genetic variance contributes to ingestive processes: A survey of 2-deoxy-d-glucose-induced feeding in eleven inbred mouse strains. Physiology and Behavior, 2006, 87, 595-601.	1.0	15
178	Effect of dopamine D1 and D2 receptor antagonism in the lateral hypothalamus on the expression and acquisition of fructose-conditioned flavor preference in rats. Brain Research, 2014, 1542, 70-78.	1.1	15
179	Conditioned flavor preferences in animals: Merging pharmacology, brain sites and genetic variance. Appetite, 2018, 122, 17-25.	1.8	15
180	Neuromodulatory effects of TRH upon swim and cholinergic analgesia. Peptides, 1987, 8, 299-307.	1.2	14

#	Article	IF	CITATIONS
181	Nitric oxide synthase inhibition selectively potentiates swim stress antinociception in rats. Pharmacology Biochemistry and Behavior, 1994, 47, 727-733.	1.3	14
182	Naltrexone, dopamine receptor agonists and antagonists, and food intake in rats: 2. 2-deoxy-d-glucose. Pharmacology Biochemistry and Behavior, 1994, 49, 205-211.	1.3	14
183	Lack of intersite GABA receptor subtype antagonist effects upon μ opioid receptor agonist-induced feeding elicited from either the ventral tegmental area or nucleus accumbens shell in rats. Physiology and Behavior, 2003, 79, 191-198.	1.0	14
184	Double-dissociation of D1 and opioid receptor antagonism effects on the acquisition of sucrose-conditioned flavor preferences in BALB/c and SWR mice. Pharmacology Biochemistry and Behavior, 2012, 103, 26-32.	1.3	14
185	Endogenous opiates and behavior: 2019. Peptides, 2021, 141, 170547.	1.2	14
186	BALB/c and SWR inbred mice differ in post-oral fructose appetition as revealed by sugar versus non-nutritive sweetener tests. Physiology and Behavior, 2016, 153, 64-69.	1.0	13
187	Analgesia following intraventricular administration of 2-deoxy-D-gluocse. Pharmacology Biochemistry and Behavior, 1981, 14, 579-581.	1.3	12
188	Capsaicin treatment and stress-induced analgesia. Pharmacology Biochemistry and Behavior, 1983, 18, 65-71.	1.3	12
189	Antagonism of morphine analgesia by intracerebroventricular naloxonazine. Pharmacology Biochemistry and Behavior, 1986, 24, 1721-1727.	1.3	12
190	Maintenance of beta-endorphin analgesia across age cohorts. Neurobiology of Aging, 1987, 8, 167-170.	1.5	12
191	Increases in opioid-mediated swim antinociception following endopeptidase 24.15 inhibition. Physiology and Behavior, 1991, 50, 843-845.	1.0	12
192	Opioid mediation of starch and sugar preference in the rat. Pharmacology Biochemistry and Behavior, 2010, 96, 507-514.	1.3	12
193	Endogenous opiates and behavior: 2020. Peptides, 2022, 151, 170752.	1.2	12
194	Modulation of antinociceptive responses following tail pinch stress. Life Sciences, 1982, 30, 719-729.	2.0	11
195	Differential alterations in opioid analgesia following neonatal monosodium glutamate treatment. Brain Research Bulletin, 1985, 15, 299-305.	1.4	11
196	Inhibition of deprivation-induced feeding by naloxone and cholecystokinin in rats: Effects of central alloxan. Brain Research Bulletin, 1990, 24, 375-379.	1.4	11
197	Central opioid receptor subtype mediation of isoproterenol-induced drinking in rats. Brain Research, 1994, 657, 310-314.	1.1	11
198	Enhancements in swim stress-induced hypothermia, but not analgesia, following amygdala lesions in rats. Physiology and Behavior, 1996, 59, 77-82.	1.0	11

#	Article	IF	CITATIONS
199	Antinociceptive and behavioral activation responses elicited by d-Pro2-Endomorphin-2 in the ventrolateral periaqueductal gray are sensitive to sex and gonadectomy differences in ratsâ~†. Peptides, 2000, 21, 705-715.	1.2	11
200	Differential Dose-dependent Effects of Central Morphine Treatment upon Food Intake in Male and Female Rats Receiving Neonatal Hormone Manipulations*. Nutritional Neuroscience, 2003, 6, 53-57.	1.5	11
201	Ventromedial and medial preoptic hypothalamic ibotenic acid lesions potentiate systemic morphine analgesia in female, but not male rats. Behavioural Brain Research, 2010, 214, 301-316.	1.2	11
202	Dopamine D1 and opioid receptor antagonism effects on the acquisition and expression of fat-conditioned flavor preferences in BALB/c and SWR mice. Pharmacology Biochemistry and Behavior, 2013, 110, 127-136.	1.3	11
203	Muscarinic and nicotinic cholinergic receptor antagonists differentially mediate acquisition of fructose-conditioned flavor preference and quinine-conditioned flavor avoidance in rats. Neurobiology of Learning and Memory, 2015, 123, 239-249.	1.0	11
204	D- and l-Amphetamine differentially mediates self-stimulation in rat dorsal midbrain area. Physiology and Behavior, 1976, 16, 1-7.	1.0	10
205	Differential actions of central alloxan upon opioid and nonopioid antinociception in rats. Pharmacology Biochemistry and Behavior, 1989, 34, 511-516.	1.3	10
206	Antinociceptive and hypothermic crosstolerance between continuous and intermittent cold-water swims in rats. Physiology and Behavior, 1993, 54, 1081-1084.	1.0	10
207	Site-specific modulation of morphine and swim-induced antinociception following thyrotropin-releasing hormone in the rat periaqueductal gray. Pain, 1993, 55, 71-84.	2.0	10
208	Reciprocal interactions between the amygdala and ventrolateral periaqueductal gray in mediating of Q/N1–17-induced analgesia in the rat. Brain Research, 2003, 980, 57-70.	1.1	10
209	Roles of NMDA and dopamine D1 and D2 receptors in the acquisition and expression of flavor preferences conditioned by oral glucose in rats. Neurobiology of Learning and Memory, 2014, 114, 223-230.	1.0	10
210	Dopamine receptor signaling in the medial orbital frontal cortex and the acquisition and expression of fructose-conditioned flavor preferences in rats. Brain Research, 2015, 1596, 116-125.	1.1	10
211	Dissociation of Analgesic and Hyperphagic Responses Following 2-Deoxy-D-Glucose. International Journal of Neuroscience, 1983, 21, 225-236.	0.8	9
212	Potentiation of vasopressin analgesia in rats treated neonatally with monosodium glutamate. Peptides, 1985, 6, 621-626.	1.2	9
213	Selective potentiations in opioid analgesia following scopolamine pretreatment. Psychopharmacology, 1986, 89, 175-176.	1.5	9
214	Loss of striatal mu1 opiate binding by substantia nigra lesions in the rat. Life Sciences, 1988, 43, 1697-1700.	2.0	9
215	Naltrexone, serotonin receptor subtype antagonists, and carbohydrate intake in rats. Pharmacology Biochemistry and Behavior, 1994, 48, 193-201.	1.3	9
216	Recent advances in the understanding of the effects of opioid agents on feeding and appetite. Expert Opinion on Investigational Drugs, 1998, 7, 485-497.	1.9	9

#	Article	IF	CITATIONS
217	Role of NMDA, opioid and dopamine D1 and D2 receptor signaling in the acquisition of a quinine-conditioned flavor avoidance in rats. Physiology and Behavior, 2014, 128, 133-140.	1.0	9
218	Dopamine D1 and opioid receptor antagonists differentially reduce the acquisition and expression of fructose-conditioned flavor preferences in BALB/c and SWR mice. Physiology and Behavior, 2015, 151, 213-220.	1.0	9
219	Differential locus coeruleus and hypothalamic self-stimulation interactions. Physiological Psychology, 1979, 7, 269-277.	0.8	8
220	Genetic variance contributes to ingestive processes: A survey of mercaptoacetate-induced feeding in eleven inbred and one outbred mouse strains. Physiology and Behavior, 2006, 88, 516-522.	1.0	8
221	Murine genetic variance in muscarinic cholinergic receptor antagonism of sucrose and saccharin solution intakes in three inbred mouse strains. Pharmacology Biochemistry and Behavior, 2017, 163, 50-56.	1.3	8
222	Reductions in pain thresholds and morphine analgesia following intracerebroventricular parachlorophenylalanine. Pharmacology Biochemistry and Behavior, 1984, 21, 79-84.	1.3	7
223	Naltrexone, serotonin receptor subtype antagonists, and glucoprivic intake: 2. Insulin. Pharmacology Biochemistry and Behavior, 1992, 42, 671-680.	1.3	7
224	Role of systemic endocannabinoid CB-1 receptor antagonism in the acquisition and expression of fructose-conditioned flavor–flavor preferences in rats. Pharmacology Biochemistry and Behavior, 2008, 90, 318-324.	1.3	7
225	Hypothalamic self-stimulation differs as a function of anodal locus. Physiological Psychology, 1978, 6, 48-52.	0.8	6
226	Loss of morphine hyperphagia following neonatal monosodium glutamate treatment in rats. Life Sciences, 1986, 38, 947-950.	2.0	6
227	Intracerebroventricular alloxan reduces 2-deoxy-D-glucose analgesia. Physiology and Behavior, 1988, 42, 465-470.	1.0	6
228	Changes in mouse mu opioid receptor Exon 7/8â€like immunoreactivity following food restriction and food deprivation in rats. Synapse, 2009, 63, 585-597.	0.6	6
229	General, kappa, delta and mu opioid receptor antagonists mediate feeding elicited by the GABA-B agonist baclofen in the ventral tegmental area and nucleus accumbens shell in rats: Reciprocal and regional interactions. Brain Research, 2012, 1443, 34-51.	1.1	6
230	Evaluation of saccharin intake and expression of fructose-conditioned flavor preferences following opioid receptor antagonism in the medial prefrontal cortex, amygdala or lateral hypothalamus in rats. Neuroscience Letters, 2014, 564, 94-98.	1.0	6
231	NMDA receptor antagonism differentially reduces acquisition and expression of sucrose- and fructose-conditioned flavor preferences in BALB/c and SWR mice. Pharmacology Biochemistry and Behavior, 2016, 148, 76-83.	1.3	6
232	Acquisition and expression of fat-conditioned flavor preferences are differentially affected by NMDA receptor antagonism in BALB/c and SWR mice. European Journal of Pharmacology, 2017, 799, 26-32.	1.7	6
233	Measurement of Stress-Induced Analgesia. Methods in Neurosciences, 1993, 14, 281-293.	0.5	6
234	"C.R.E.A.T.E."-ing Unique Primary-Source Research Paper Assignments for a Pleasure and Pain Course Teaching Neuroscientific Principles in a Large General Education Undergraduate Course. Journal of Undergraduate Neuroscience Education: JUNE: A Publication of FUN, Faculty for Undergraduate Neuroscience, 2016, 14, A104-10.	0.6	6

#	Article	IF	CITATIONS
235	Monophasic pulse pair analysis of intracranial self-stimulation loci. Physiological Psychology, 1978, 6, 170-178.	0.8	5
236	Two % saline treatment: Failure to alter opiate and cold-water stress analgesia. Physiology and Behavior, 1980, 24, 805-806.	1.0	5
237	Tail-pinch hyperalgesia and analgesia: Test-specific opioid and nonopioid actions. Learning and Motivation, 1983, 14, 367-379.	0.6	5
238	Onset of Pain Threshold Changes Induced by Neonatal Monosodium Glutamate. International Journal of Neuroscience, 1984, 24, 275-279.	0.8	5
239	Differential effects of dptyr(me)avp, a vasopressin antagonist, upon foot shock analgesia. International Journal of Neuroscience, 1985, 28, 269-278.	0.8	5
240	Dissociation of opioid and nonopioid analgesic responses following adult monosodium glutamate pretreatment. Physiology and Behavior, 1989, 46, 217-222.	1.0	5
241	Prior exposure to nutritive and artificial sweeteners differentially alters the magnitude and persistence of sucrose-conditioned flavor preferences in BALB/c and C57BL/6 inbred mouse strains. Nutritional Neuroscience, 2019, 22, 706-717.	1.5	5
242	U50488H-Induced Analgesia in the Amygdala: Test-Specific Effects and Blockade by General and μ-Opioid Antagonists in the Periaqueductal Gray. Analgesia (Elmsford, N Y), 1998, 3, 223-230.	0.5	5
243	Potentiation of 2-deoxy-D-glucose antinociception, but not hyperphagia by zolantidine, a Histamine (H2) receptor antagonist. Pharmacology Biochemistry and Behavior, 1992, 41, 371-376.	1.3	4
244	2-deoxy-d-glucose antinociception and serotonin receptor subtype antagonists: Test-specific effects in rats. Pharmacology Biochemistry and Behavior, 1992, 43, 1241-1246.	1.3	4
245	Cold-water swim analgesia following pharmacological manipulation of GABA. Behavioral and Neural Biology, 1982, 36, 311-314.	2.3	3
246	Analgesic properties of a systemically-administered synthetic dipeptide of 5-hydroxytryptophan. Peptides, 1986, 7, 995-999.	1.2	3
247	Feeding and drinking. , 0, , 97-108.		3
248	Baclofen differentially mediates fructose-conditioned flavor preference and quinine-conditioned flavor avoidance in rats. European Journal of Pharmacology, 2016, 775, 15-21.	1.7	3
249	Murine genetic variance in muscarinic cholinergic receptor antagonism of acquisition and expression of sucrose-conditioned flavor preferences in three inbred mouse strains. Pharmacology Biochemistry and Behavior, 2018, 172, 1-8.	1.3	3
250	Opioid addiction. Peptides, 2019, 116, 68-70.	1.2	3
251	Differential actions of central alloxan upon opioid and nonopioid antinociception in rats: A further examination. Brain Research Bulletin, 1991, 27, 35-39.	1.4	2

252 Central Mechanisms of Pain Suppression. , 2013, , 2595-2619.

#	Article	IF	CITATIONS
253	Muscarinic, nicotinic and GABAergic receptor signaling differentially mediate fat-conditioned flavor preferences in rats. Pharmacology Biochemistry and Behavior, 2016, 150-151, 14-21.	1.3	2
254	Central Mechanisms of Pain Suppression: Central Mechanisms of Pain Modulation. , 2016, , 3439-3464.		2
255	Strain differences in muscarinic cholinergic receptor antagonism of fat intake and acquisition and expression of fat-conditioned flavor preferences in male BALB/c, C57BL/6 and SWR mice. Pharmacology Biochemistry and Behavior, 2019, 187, 172792.	1.3	2
256	Interactive Mechanisms of Supraspinal Sites of Opioid Analgesic Action: A Festschrift to Dr. Gavril W. Pasternak. Cellular and Molecular Neurobiology, 2021, 41, 863-897.	1.7	2
257	Differential fructose and glucose appetition in DBA/2, 129P3 and C57BL/6Â×Â129P3 hybrid mice revealed by sugar versus non-nutritive sweetener tests. Physiology and Behavior, 2021, 241, 113590.	1.0	2
258	Pleasure and pain: teaching neuroscientific principles of hedonism in a large general education undergraduate course. Journal of Undergraduate Neuroscience Education: JUNE: A Publication of FUN, Faculty for Undergraduate Neuroscience, 2013, 12, A34-41.	0.6	2
259	LETTER TO THE EDITOR: INTRINSIC NON-OPIATE MECHANISMS OF ANALGESIA. Acupuncture and Electro-Therapeutics Research, 1979, 4, 159-161.	0.0	1
260	Time-dependent and dose-dependent effects of fenfluramine upon pain thresholds. Bulletin of the Psychonomic Society, 1982, 19, 355-358.	0.2	1
261	Intracranial self-stimulation: Temporal interactions among mesencephalic and diencephalic sites. Physiology and Behavior, 1982, 28, 473-482.	1.0	1
262	Modulation of deprivation-induced food intake by d-phenylalanine. International Journal of Neuroscience, 1983, 20, 295-301.	0.8	1
263	Reduction in 2-deoxy-d-glucose analgesia following acute, but not chronic antidepressant treatment. Psychopharmacology, 1987, 91, 207-8.	1.5	1
264	Role of opiate peptides in regulating energy balance. , 2008, , 232-265.		1
265	Acquisition and expression of sucrose conditioned flavor preferences following dopamine D1, opioid and NMDA receptor antagonism in C57BL/6 mice. Nutritional Neuroscience, 2020, 23, 672-678.	1.5	1
266	Acute d-fenfluramine, but not fluoxetine decreases sweet intake in BALB/c, C57BL/6 and SWR inbred mouse strains Physiology and Behavior, 2020, 224, 113029.	1.0	1
267	Acquisition and expression of fat conditioned flavor preferences following dopamine D1, opioid and NMDA receptor antagonism in C57BL/6 mice. Nutritional Neuroscience, 2020, , 1-9.	1.5	1
268	Comparison of Central and Peripheral Thyrotropin Releasing Hormone Administration upon Stress-Induced Analgesia. Annals of the New York Academy of Sciences, 1986, 467, 430-432.	1.8	0
269	Differential Actions of Scopolamine upon the Analgesic Responses to Stress and Pilocarpine. Annals of the New York Academy of Sciences, 1986, 467, 436-438.	1.8	0
270	Peptides Editorial: Opioid addiction: A 2021 update. Peptides, 2021, 146, 170668.	1.2	0

#	Article	IF	CITATIONS
271	A Maturation in Pain Research. PsycCritiques, 1997, 42, 514-516.	0.0	0