
Giuseppe Schettino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8752930/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3d tissue models as tools for radiotherapy screening for pancreatic cancer. British Journal of Radiology, 2021, 94, 20201397.	2.2	17
2	Impact of superparamagnetic iron oxide nanoparticles on in vitro and in vivo radiosensitisation of cancer cells. Radiation Oncology, 2021, 16, 104.	2.7	24
3	Novel Anticancer and Treatment Sensitizing Compounds against Pancreatic Cancer. Cancers, 2021, 13, 2940.	3.7	8
4	Evaluation of a micro ionization chamber for dosimetric measurements in image-guided preclinical irradiation platforms. Physics in Medicine and Biology, 2021, 66, 245012.	3.0	5
5	On the Evaluation of a Novel Hypoxic 3D Pancreatic Cancer Model as a Tool for Radiotherapy Treatment Screening. Cancers, 2021, 13, 6080.	3.7	14
6	Relationship of In Vitro Toxicity of Technetium-99m to Subcellular Localisation and Absorbed Dose. International Journal of Molecular Sciences, 2021, 22, 13466.	4.1	5
7	LhARA: The Laser-hybrid Accelerator for Radiobiological Applications. Frontiers in Physics, 2020, 8, .	2.1	19
8	A Novel Scaffold-Based Hybrid Multicellular Model for Pancreatic Ductal Adenocarcinoma—Toward a Better Mimicry of the in vivo Tumor Microenvironment. Frontiers in Bioengineering and Biotechnology, 2020, 8, 290.	4.1	37
9	Development and Implementation of an End-To-End Test for Absolute Dose Verification of Small Animal Preclinical Irradiation Research Platforms. International Journal of Radiation Oncology Biology Physics, 2020, 107, 587-596.	0.8	11
10	Radiobiological Implications of Nanoparticles Following Radiation Treatment. Particle and Particle Systems Characterization, 2020, 37, 1900411.	2.3	14
11	The influence of lack of reference conditions on dosimetry in pre-clinical radiotherapy with medium energy x-ray beams. Physics in Medicine and Biology, 2020, 65, 085016.	3.0	9
12	Evaluation of a Novel Liquid Fiducial Marker, BioXmark®, for Small Animal Image-Guided Radiotherapy Applications. Cancers, 2020, 12, 1276.	3.7	9
13	Focused very high-energy electron beams as a novel radiotherapy modality for producing high-dose volumetric elements. Scientific Reports, 2019, 9, 10837.	3.3	40
14	The effect of radioiodine treatment on the diseased thyroid gland. International Journal of Radiation Biology, 2019, 95, 1718-1727.	1.8	13
15	DNA DSB Repair Dynamics following Irradiation with Laser-Driven Protons at Ultra-High Dose Rates. Scientific Reports, 2019, 9, 4471.	3.3	37
16	Using the Proton Energy Spectrum and Microdosimetry to Model Proton Relative Biological Effectiveness. International Journal of Radiation Oncology Biology Physics, 2019, 104, 316-324.	0.8	28
17	Chemoradiotherapy screening in a novel biomimetic polymer based pancreatic cancer model. RSC Advances, 2019, 9, 41649-41663.	3.6	21
18	Biological effects of static magnetic field exposure in the context of MR-guided radiotherapy. British Journal of Radiology, 2019, 92, 20180484.	2.2	16

#	Article	IF	CITATIONS
19	Microbeam evolution: from single cell irradiation to pre-clinical studies. International Journal of Radiation Biology, 2018, 94, 708-718.	1.8	27
20	Recommendations for clinical translation of nanoparticle-enhanced radiotherapy. British Journal of Radiology, 2018, 91, 20180325.	2.2	12
21	Biological mechanisms of gold nanoparticle radiosensitization. Cancer Nanotechnology, 2017, 8, 2.	3.7	180
22	Laser-plasma generated very high energy electrons (VHEEs) in radiotherapy. , 2017, , .		5
23	A mechanistic study of gold nanoparticle radiosensitisation using targeted microbeam irradiation. Scientific Reports, 2017, 7, 44752.	3.3	50
24	Effects of dead time on quantitative dual-energy imaging using a position-sensitive spectroscopic detector. , 2017, , .		0
25	Pro-inflammatory Signaling in a 3D Organotypic Skin Model after Low LET Irradiation—NF-κB, COX-2 Activation, and Impact on Cell Differentiation. Frontiers in Immunology, 2017, 8, 82.	4.8	18
26	Small field dosimetry for the small animal radiotherapy research platform (SARRP). Radiation Oncology, 2017, 12, 204.	2.7	30
27	Standards and Methodologies for Characterizing Radiobiological Impact of High-Z Nanoparticles. Theranostics, 2016, 6, 1651-1671.	10.0	75
28	Protein disulphide isomerase as a target for nanoparticle-mediated sensitisation of cancer cells to radiation. Nanotechnology, 2016, 27, 215101.	2.6	36
29	Effects of magnetic field on an optical fibre radiation dosimeter. , 2016, , .		0
30	Imaging and radiation effects of gold nanoparticles in tumour cells. Scientific Reports, 2016, 6, 19442.	3.3	111
31	Impact of fractionation on out-of-field survival and DNA damage responses following exposure to intensity modulated radiation fields. Physics in Medicine and Biology, 2016, 61, 515-526.	3.0	7
32	Investigating the Implications of a Variable RBE on Proton Dose Fractionation Across a Clinical Pencil Beam Scanned Spread-Out Bragg Peak. International Journal of Radiation Oncology Biology Physics, 2016, 95, 70-77.	0.8	57
33	Variations in the Processing of DNA Double-Strand Breaks Along 60-MeV Therapeutic Proton Beams. International Journal of Radiation Oncology Biology Physics, 2016, 95, 86-94.	0.8	74
34	Enhancement of radiation effectiveness by high Z nanoparticles. Physica Medica, 2015, 31, e34.	0.7	0
35	Future development of biologically relevant dosimetry. British Journal of Radiology, 2015, 88, 20140392.	2.2	55
36	ELIMED, MEDical and multidisciplinary applications at ELI-Beamlines. Journal of Physics: Conference Series, 2014, 508, 012010.	0.4	19

#	Article	IF	CITATIONS
37	Microbeam Radiation Biology. , 2014, , 23-42.		1
38	Relative Biological Effectiveness Variation Along Monoenergetic and Modulated Bragg Peaks of a 62-MeV Therapeutic Proton Beam: A Preclinical Assessment. International Journal of Radiation Oncology Biology Physics, 2014, 90, 27-35.	0.8	178
39	Identification of a BRCA1-mRNA Splicing Complex Required for Efficient DNA Repair and Maintenance of Genomic Stability. Molecular Cell, 2014, 54, 445-459.	9.7	146
40	Mechanisms of DNA Damage Response to Targeted Irradiation in Organotypic 3D Skin Cultures. PLoS ONE, 2014, 9, e86092.	2.5	12
41	Radiobiology at ultra-high dose rates employing laser-driven ions. Proceedings of SPIE, 2013, , .	0.8	0
42	DNA Double Strand Break Repair: A Radiation Perspective. Antioxidants and Redox Signaling, 2013, 18, 2458-2472.	5.4	72
43	Radiobiology challenges for ELIMED. , 2013, , .		Ο
44	Investigations of DNA damage induction and repair resulting from cellular exposure to high dose-rate pulsed proton beams. , 2013, , .		0
45	First results on cell irradiation with laser-driven protons on the TARANIS system. , 2013, , .		3
46	ELIMED: a new hadron therapy concept based on laser driven ion beams. Proceedings of SPIE, 2013, , .	0.8	13
47	Antiproton induced DNA damage: proton like in flight, carbon-ion like near rest. Scientific Reports, 2013, 3, 1770.	3.3	21
48	A Kinetic-Based Model of Radiation-Induced Intercellular Signalling. PLoS ONE, 2013, 8, e54526.	2.5	55
49	Use of the Î ³ -H2AX Assay to Investigate DNA Repair Dynamics Following Multiple Radiation Exposures. PLoS ONE, 2013, 8, e79541.	2.5	143
50	Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles. International Journal of Nanomedicine, 2012, 7, 2673.	6.7	150
51	Biological cell irradiation at ultrahigh dose rate employing laser driven protons. , 2012, , .		Ο
52	Relative biological effectiveness (RBE) and out-of-field cell survival responses to passive scattering and pencil beam scanning proton beam deliveries. Physics in Medicine and Biology, 2012, 57, 6671-6680.	3.0	15
53	Biological effectiveness on live cells of laser driven protons at dose rates exceeding 109 Gy/s. AIP Advances, 2012, 2, .	1.3	97
54	Development of a low-energy particle irradiation facility for the study of the biological effectiveness of the ion track end. Journal of Physics: Conference Series, 2012, 373, 012019.	0.4	4

#	Article	IF	CITATIONS
55	Differential Mechanisms of Cellular Radiobiological Response Following Exposure to Intensity Modulated Radiation Fields. International Journal of Radiation Oncology Biology Physics, 2012, 84, S672.	0.8	0
56	Dose, dose-rate and field size effects on cell survival following exposure to non-uniform radiation fields. Physics in Medicine and Biology, 2012, 57, 3197-3206.	3.0	43
57	Spatial and Temporal Aspects of Radiation Response in Cell and Tissue Models. Biological and Medical Physics Series, 2012, , 385-396.	0.4	0
58	453 poster CONSEQUENCES OF NANOSCALE ENERGY DEPOSITION AROUND HEAVY ATOM NANOPARTICLES: IMPLICATIONS FOR RADIOTHERAPY. Radiotherapy and Oncology, 2011, 99, S182.	0.6	0
59	Energy Dependence of Gold Nanoparticle Radiosensitization in Plasmid DNA. Journal of Physical Chemistry C, 2011, 115, 20160-20167.	3.1	50
60	Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy. Radiotherapy and Oncology, 2011, 100, 412-416.	0.6	174
61	Oxidative Metabolism Involved in Non-targeted Effects Induced by Proton Radiation in Intact Arabidopsis Seeds. Journal of Radiation Research, 2011, 52, 159-167.	1.6	6
62	Spatiotemporal investigations of DNA damage repair using microbeams. Radiation Protection Dosimetry, 2011, 143, 340-343.	0.8	9
63	hSSB1 rapidly binds at the sites of DNA double-strand breaks and is required for the efficient recruitment of the MRN complex. Nucleic Acids Research, 2011, 39, 1692-1702.	14.5	70
64	Microbeams in radiation biology: review and critical comparison. Radiation Protection Dosimetry, 2011, 143, 335-339.	0.8	26
65	Ion source development and radiobiology applications within the LIBRA project. , 2011, , .		4
66	Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Scientific Reports, 2011, 1, 18.	3.3	335
67	Spatio-temporal analysis of DNA damage repair using the X-ray microbeam. European Physical Journal D, 2010, 60, 157-161.	1.3	1
68	Experimental setup and first measurement of DNA damage induced along and around an antiproton beam. European Physical Journal D, 2010, 60, 209-214.	1.3	4
69	Development of a method for assessing non-targeted radiation damage in an artificial 3D human skin model. International Journal of Radiation Biology, 2010, 86, 593-601.	1.8	10
70	Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy. Nanotechnology, 2010, 21, 295101.	2.6	194
71	Radiation microbeams as spatial and temporal probes of subcellular and tissue response. Mutation Research - Reviews in Mutation Research, 2010, 704, 68-77.	5.5	24
72	X-ray Microbeams for Radiobiological Studies: Current Status and Future Challenges. Progress in Electromagnetics Research Symposium: [proceedings] Progress in Electromagnetics Research Symposium, 2010, 6, 207-211.	0.4	6

#	Article	IF	CITATIONS
73	Application of Microbeams to the Study of the Biological Effects of Low Dose Irradiation. , 2010, , 575-594.		0
74	Microbeam Studies of the Bystander Response. Journal of Radiation Research, 2009, 50, A1-A6.	1.6	40
75	The DNA Damage Response in Nontargeted Cells. , 2009, , 193-198.		0
76	Histone H2AX Phosphorylation in Normal Human Cells Irradiated with Focused Ultrasoft X Rays: Evidence for Chromatin Movement during Repair. Radiation Research, 2006, 166, 31-38.	1.5	37
77	Understanding Radiation Damage to Cells Using Microbeams. Acta Physica Polonica A, 2006, 109, 257-264.	0.5	3
78	New insights into the cellular response to radiation using microbeams. Nuclear Instruments & Methods in Physics Research B, 2005, 231, 189-194.	1.4	19
79	Low-Dose Binary Behavior of Bystander Cell Killing after Microbeam Irradiation of a Single Cell with Focused CKX Rays. Radiation Research, 2005, 163, 332-336.	1.5	139
80	New insights on cell death from radiation exposure. Lancet Oncology, The, 2005, 6, 520-528.	10.7	316
81	Evidence for induction of DNA double strand breaks in the bystander response to targeted soft X-rays in CHO cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2004, 556, 209-215.	1.0	68
82	Low-Dose Studies of Bystander Cell Killing with Targeted Soft X Rays. Radiation Research, 2003, 160, 505-511.	1.5	129
83	The Gray Cancer institute X-ray microprobe and its radiobiological applications. European Physical Journal Special Topics, 2003, 104, 301-304.	0.2	0
84	Upgrading of the Gray Laboratory Soft X Ray Microprobe with V79 Survival Measurements Following Irradiation of One or All Cells with a Ck X Ray Beam of Different Size. Radiation Protection Dosimetry, 2002, 99, 287-288.	0.8	12
85	Non-targeted Effects of Radiation: Bystander Responses in Cell and Tissue Models. Radiation Protection Dosimetry, 2002, 99, 223-226.	0.8	71
86	Investigating the cellular effects of isolated radiation tracks using microbeam techniques. Advances in Space Research, 2002, 30, 871-876.	2.6	29
87	<title>Development and application of a focused ultrasoft x-ray probe for radiobiological applications</title> ., 2001, , .		2
88	The impact of microbeams in radiation biology. Nuclear Instruments & Methods in Physics Research B, 2001, 181, 426-430.	1.4	28
89	Low-Dose Hypersensitivity in Chinese Hamster V79 Cells Targeted with Counted Protons Using a Charged-Particle Microbeam. Radiation Research, 2001, 156, 526-534.	1.5	73
90	A Focused Ultrasoft X-Ray Microbeam for Targeting Cells Individually with Submicrometer Accuracy. Radiation Research, 2001, 156, 796-804.	1.5	94

#	Article	IF	CITATIONS
91	Single ion actions: The induction of micronuclei in V79 cells exposed to individual protons. Advances in Space Research, 2000, 25, 2095-2101.	2.6	22
92	The x-ray microprobe for studies of cellular radiation response. AIP Conference Proceedings, 2000, , .	0.4	0
93	<title>X-ray microprobe for studies of cellular radiation response</title> . , 1998, , .		0
94	A charged-particle microbeam: I. Development of an experimental system for targeting cells individually with counted particles. International Journal of Radiation Biology, 1997, 72, 375-385.	1.8	181
95	A charged-particle microbeam: II. A single-particle micro-collimation and detection system International Journal of Radiation Biology, 1997, 72, 387-395.	1.8	123
96	Two approaches for irradiating cells individually: a charged-particle microbeam and a soft X-ray microprobe. Nuclear Instruments & Methods in Physics Research B, 1997, 130, 270-274.	1.4	24