
Laura Kiessling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/875148/publications.pdf Version: 2024-02-01

LALIDA KIESSLING

#	Article	IF	CITATIONS
1	Chemical Glycobiology. Science, 2001, 291, 2357-2364.	12.6	1,736
2	Synthetic Multivalent Ligands as Probes of Signal Transduction. Angewandte Chemie - International Edition, 2006, 45, 2348-2368.	13.8	774
3	Influencing Receptorâ `'Ligand Binding Mechanisms with Multivalent Ligand Architecture. Journal of the American Chemical Society, 2002, 124, 14922-14933.	13.7	657
4	How many human proteoforms are there?. Nature Chemical Biology, 2018, 14, 206-214.	8.0	580
5	Synthetic multivalent ligands in the exploration of cell-surface interactions. Current Opinion in Chemical Biology, 2000, 4, 696-703.	6.1	520
6	Staudinger Ligation:  A Peptide from a Thioester and Azide. Organic Letters, 2000, 2, 1939-1941.	4.6	482
7	Surface Plasmon Resonance Imaging Studies of Protein-Carbohydrate Interactions. Journal of the American Chemical Society, 2003, 125, 6140-6148.	13.7	475
8	Trophoblast L-Selectin-Mediated Adhesion at the Maternal-Fetal Interface. Science, 2003, 299, 405-408.	12.6	437
9	Control of Multivalent Interactions by Binding Epitope Density. Journal of the American Chemical Society, 2002, 124, 1615-1619.	13.7	372
10	Strength in numbers: non-natural polyvalent carbohydrate derivatives. Chemistry and Biology, 1996, 3, 71-77.	6.0	360
11	Probing Low Affinity and Multivalent Interactions with Surface Plasmon Resonance:  Ligands for Concanavalin A. Journal of the American Chemical Society, 1998, 120, 10575-10582.	13.7	323
12	Varying the Size of Multivalent Ligands:Â The Dependence of Concanavalin A Binding on Neoglycopolymer Length. Journal of the American Chemical Society, 1997, 119, 9931-9932.	13.7	295
13	Glycopolymer probes of signal transduction. Chemical Society Reviews, 2013, 42, 4476.	38.1	290
14	Carbohydrate–Aromatic Interactions in Proteins. Journal of the American Chemical Society, 2015, 137, 15152-15160.	13.7	282
15	Recognition Specificity of Neoglycopolymers Prepared by Ring-Opening Metathesis Polymerization. Journal of the American Chemical Society, 1996, 118, 2297-2298.	13.7	259
16	Inter-receptor communication through arrays of bacterial chemoreceptors. Nature, 2002, 415, 81-84.	27.8	249
17	Selective Tumor Cell Targeting Using Low-Affinity, Multivalent Interactions. ACS Chemical Biology, 2007, 2, 119-127.	3.4	244
18	A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nature Methods, 2010, 7, 989-994.	19.0	243

#	Article	IF	CITATIONS
19	High-Yielding Staudinger Ligation of a Phosphinothioester and Azide To Form a Peptide. Organic Letters, 2001, 3, 9-12.	4.6	234
20	Synthesis of Cell Agglutination Inhibitors by Aqueous Ring-Opening Metathesis Polymerization. Journal of the American Chemical Society, 1994, 116, 12053-12054.	13.7	233
21	Recognition Sequence Design for Peptidyl Modulators of β-Amyloid Aggregation and Toxicityâ€. Biochemistry, 1999, 38, 3570-3578.	2.5	218
22	Structureâ^'Function Relationships for Inhibitors of β-Amyloid Toxicity Containing the Recognition Sequence KLVFFâ€. Biochemistry, 2001, 40, 7882-7889.	2.5	218
23	A General Synthetic Route to Defined, Biologically Active Multivalent Arrays. Journal of the American Chemical Society, 1999, 121, 6193-6196.	13.7	211
24	Chemical Approaches to Glycobiology. Annual Review of Biochemistry, 2010, 79, 619-653.	11.1	209
25	A Strategy for Designing Inhibitors of β-Amyloid Toxicity. Journal of Biological Chemistry, 1996, 271, 29525-29528.	3.4	197
26	Synthesis of Sulfated Neoglycopolymers:Â Selective P-Selectin Inhibitors. Journal of the American Chemical Society, 1997, 119, 3161-3162.	13.7	173
27	Activating B Cell Signaling with Defined Multivalent Ligands. ACS Chemical Biology, 2007, 2, 252-262.	3.4	153
28	Substratum-induced differentiation of human pluripotent stem cells reveals the coactivator YAP is a potent regulator of neuronal specification. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13805-13810.	7.1	153
29	Neoglycopolymer inhibitors of the selectins. Tetrahedron, 1997, 53, 11937-11952.	1.9	142
30	Defined Substrates for Human Embryonic Stem Cell Growth Identified from Surface Arrays. ACS Chemical Biology, 2007, 2, 347-355.	3.4	141
31	Synthetic ligands point to cell surface strategies. Nature, 1998, 392, 30-31.	27.8	135
32	Glycosaminoglycan-Binding Hydrogels Enable Mechanical Control of Human Pluripotent Stem Cell Self-Renewal. ACS Nano, 2012, 6, 10168-10177.	14.6	135
33	High-Throughput Discovery of Synthetic Surfaces That Support Proliferation of Pluripotent Cells. Journal of the American Chemical Society, 2010, 132, 1289-1295.	13.7	133
34	Recognition of microbial glycans by human intelectin-1. Nature Structural and Molecular Biology, 2015, 22, 603-610.	8.2	133
35	Recognition of all four base pairs of double-helical DNA by triple-helix formation: design of nonnatural deoxyribonucleosides for pyrimidine.cntdot.purine base pair binding. Journal of the American Chemical Society, 1992, 114, 7976-7982.	13.7	125
36	Synthesis of end-labeled multivalent ligands for exploring cell-surface-receptor–ligand interactions. Chemistry and Biology, 2000, 7, 9-16.	6.0	125

#	Article	IF	CITATIONS
37	A unique catalytic mechanism for UDP-galactopyranose mutase. Nature Structural and Molecular Biology, 2004, 11, 539-543.	8.2	125
38	Chemical Probes of UDP-Galactopyranose Mutase. Chemistry and Biology, 2006, 13, 825-837.	6.0	119
39	Affinity-Based Inhibition of β-Amyloid Toxicity. Biochemistry, 2002, 41, 8620-8629.	2.5	115
40	Non-carbohydrate Inhibitors of the Lectin DC-SIGN. Journal of the American Chemical Society, 2007, 129, 12780-12785.	13.7	113
41	Sialylated multivalent antigens engage CD22 <i>in trans</i> and inhibit B cell activation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2500-2505.	7.1	113
42	The Ecstasy and Agony of Assay Interference Compounds. Journal of Medicinal Chemistry, 2017, 60, 2165-2168.	6.4	113
43	Synthesis and Applications of End-Labeled Neoglycopolymers. Organic Letters, 2002, 4, 2293-2296.	4.6	112
44	General Synthetic Route to Cell-Permeable Block Copolymers via ROMP. Journal of the American Chemical Society, 2009, 131, 7327-7333.	13.7	110
45	A proteome-wide atlas of lysine-reactive chemistry. Nature Chemistry, 2021, 13, 1081-1092.	13.6	107
46	Flanking sequence effects within the pyrimidine triple-helix motif characterized by affinity cleaving. Biochemistry, 1992, 31, 2829-2834.	2.5	105
47	Specificity ofC-Glycoside Complexation by Mannose/Glucose Specific Lectinsâ€. Biochemistry, 1996, 35, 3619-3624.	2.5	104
48	Conformational changes of glucose/galactose-binding protein illuminated by open, unliganded, and ultra-high-resolution ligand-bound structures. Protein Science, 2007, 16, 1032-1041.	7.6	103
49	Polyspecific pyrrolysyl-tRNA synthetases from directed evolution. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16724-16729.	7.1	101
50	Evolutionary Conservation of Methyl-Accepting Chemotaxis Protein Location in <i>Bacteria</i> and <i>Archaea</i> . Journal of Bacteriology, 2000, 182, 6499-6502.	2.2	96
51	Arrays for the Combinatorial Exploration of Cell Adhesion. Journal of the American Chemical Society, 2004, 126, 10808-10809.	13.7	95
52	Identification of Inhibitors for UDP-Galactopyranose Mutase. Journal of the American Chemical Society, 2004, 126, 10532-10533.	13.7	93
53	Motility and Chemotaxis of Filamentous Cells ofEscherichia coli. Journal of Bacteriology, 2000, 182, 4337-4342.	2.2	92
54	New Insights into Bacterial Chemoreceptor Array Structure and Assembly from Electron Cryotomography. Biochemistry, 2014, 53, 1575-1585.	2.5	91

#	Article	IF	CITATIONS
55	Inhibition of L-selectin-mediated Leukocyte Rolling by Synthetic Glycoprotein Mimics. Journal of Biological Chemistry, 1999, 274, 5271-5278.	3.4	90
56	A Polymeric Domain That Promotes Cellular Internalization. Journal of the American Chemical Society, 2008, 130, 5626-5627.	13.7	90
57	Synthesis of the bicyclic core of the esperamicin/calichemicin class of antitumor agents. Journal of the American Chemical Society, 1988, 110, 631-633.	13.7	89
58	Model of the interactions of calichemicin gamma 1 with a DNA fragment from pBR322 Proceedings of the United States of America, 1989, 86, 1105-1109.	7.1	89
59	Improved Chemical Synthesis of UDP-Galactofuranose. Organic Letters, 2001, 3, 2517-2519.	4.6	88
60	Inhibitors of UDP-Galactopyranose Mutase Thwart Mycobacterial Growth. Journal of the American Chemical Society, 2008, 130, 6706-6707.	13.7	88
61	Tuning chemotactic responses with synthetic multivalent ligands. Chemistry and Biology, 2000, 7, 583-591.	6.0	86
62	Stereoselective N-Glycosylation by Staudinger Ligation. Organic Letters, 2004, 6, 4479-4482.	4.6	83
63	Cell Aggregation by Scaffolded Receptor Clusters. Chemistry and Biology, 2002, 9, 163-169.	6.0	81
64	L-Selectinâ^'Carbohydrate Interactions: Relevant Modifications of the Lewis x Trisaccharideâ€. Biochemistry, 1996, 35, 14862-14867.	2.5	80
65	Synergistic Formation of Soluble Lectin Clusters by a Templated Multivalent Saccharide Ligand. Journal of the American Chemical Society, 2000, 122, 4518-4519.	13.7	78
66	The Ecstasy and Agony of Assay Interference Compounds. ACS Central Science, 2017, 3, 143-147.	11.3	78
67	Imaging mycobacterial growth and division with a fluorogenic probe. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5271-5276.	7.1	77
68	Hitting the sweet spot. Nature Biotechnology, 2002, 20, 234-235.	17.5	73
69	Hydrolysis of Double-Stranded and Single-Stranded RNA in Hairpin Structures by the Copper(II) Macrocycle Cu([9]aneN3)Cl2. Inorganic Chemistry, 1997, 36, 1715-1718.	4.0	71
70	Synthesis of Functionalizable and Degradable Polymers by Ringâ€Opening Metathesis Polymerization. Angewandte Chemie - International Edition, 2013, 52, 5061-5064.	13.8	71
71	Rhamnose Glycoconjugates for the Recruitment of Endogenous Anti arbohydrate Antibodies to Tumor Cells. ChemBioChem, 2014, 15, 1393-1398.	2.6	71
72	Selective Immobilization of Multivalent Ligands for Surface Plasmon Resonance and Fluorescence Microscopy. Analytical Biochemistry, 2002, 305, 149-155.	2.4	70

#	Article	IF	CITATIONS
73	Solid-Phase Synthesis of Polymers Using the Ring-Opening Metathesis Polymerization. Journal of the American Chemical Society, 2005, 127, 14536-14537.	13.7	70
74	Bifunctional Ligands that Target Cells Displaying the $\hat{1}\pm v\hat{1}^2$ 3 Integrin. ChemBioChem, 2007, 8, 68-82.	2.6	68
75	Recognition of microbial glycans by soluble human lectins. Current Opinion in Structural Biology, 2017, 44, 168-178.	5.7	68
76	A tethering mechanism for length control in a processive carbohydrate polymerization. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11851-11856.	7.1	67
77	Neoglycopolymers produced by aqueous ring-opening metathesis polymerization: decreasing saccharide density increases activity. Journal of Molecular Catalysis A, 1997, 116, 209-216.	4.8	65
78	Chapter 29. Principles for multivalent ligand design. Annual Reports in Medicinal Chemistry, 2000, 35, 321-330.	0.9	64
79	Quinoxalinoneinhibitors of the lectin DC-SIGN. Chemical Science, 2012, 3, 772-777.	7.4	64
80	Synthesis of Fluorogenic Polymers for Visualizing Cellular Internalization. Organic Letters, 2008, 10, 2997-3000.	4.6	62
81	Multivalent Antigens for Promoting B and T Cell Activation. ACS Chemical Biology, 2015, 10, 1817-1824.	3.4	62
82	Fluorescence Anisotropy Assays Reveal Affinities ofC- andO-Glycosides for Concanavalin A1. Journal of Organic Chemistry, 1996, 61, 534-538.	3.2	61
83	Synthetic Glycoprotein Mimics Inhibit L-Selectin-Mediated Rolling and Promote L-Selectin Shedding. Chemistry and Biology, 2004, 11, 725-732.	6.0	61
84	A Polymer Scaffold for Protein Oligomerization. Journal of the American Chemical Society, 2004, 126, 1608-1609.	13.7	60
85	Visualization of Single Multivalent Receptor–Ligand Complexes by Transmission Electron Microscopy. Angewandte Chemie - International Edition, 2000, 39, 4567-4570.	13.8	59
86	A general glycomimetic strategy yields non-carbohydrate inhibitors of DC-SIGN. Chemical Communications, 2010, 46, 6747.	4.1	58
87	Glycoprotein-inspired materials promote the proteolytic release of cell surface l-Selectin. Bioorganic and Medicinal Chemistry, 1998, 6, 1293-1299.	3.0	54
88	Contrast Agents for Magnetic Resonance Imaging Synthesized with Ring-Opening Metathesis Polymerization. Journal of the American Chemical Society, 2006, 128, 6534-6535.	13.7	54
89	Site-Directed Mutagenesis of UDP-Galactopyranose Mutase Reveals a Critical Role for the Active-Site, Conserved Arginine Residuesâ€. Biochemistry, 2007, 46, 6723-6732.	2.5	54
90	Signals from the surface modulate differentiation of human pluripotent stem cells through glycosaminoglycans and integrins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18126-18131.	7.1	53

#	Article	IF	CITATIONS
91	Reactivity of a 2â€~-Thio Nucleotide Analog. Journal of the American Chemical Society, 1996, 118, 11715-11719.	13.7	51
92	Spatial control of cell fate using synthetic surfaces to potentiate TGF-β signaling. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11745-11750.	7.1	51
93	Glycosyl Sulfonylcarbamates:Â New Glycosyl Donors with Tunable Reactivity. Journal of the American Chemical Society, 2001, 123, 3379-3380.	13.7	50
94	Noncarbohydrate Glycomimetics and Glycoprotein Surrogates as DC-SIGN Antagonists and Agonists. ACS Chemical Biology, 2012, 7, 1603-1608.	3.4	50
95	Stereoselective, Lewis acid-catalyzed glycosylation of alcohols by glucose 1,2-cyclic sulfites. Tetrahedron Letters, 1994, 35, 7335-7338.	1.4	49
96	Monitoring Processivity and Length Control of a Carbohydrate Polymerase. Journal of the American Chemical Society, 2011, 133, 12758-12766.	13.7	49
97	Large increases in attractant concentration disrupt the polar localization of bacterial chemoreceptors. Molecular Microbiology, 2005, 57, 774-785.	2.5	48
98	Phage Display Affords Peptides that Modulate β-Amyloid Aggregation. Journal of the American Chemical Society, 2006, 128, 11882-11889.	13.7	46
99	X-ray Crystallography Reveals a Reduced Substrate Complex of UDP-Galactopyranose Mutase Poised for Covalent Catalysis by Flavin,. Biochemistry, 2009, 48, 9171-9173.	2.5	46
100	Selectin-Saccharide Interactions: Revealing Structure-Function Relationships with Chemical Synthesis. Journal of Organic Chemistry, 1995, 60, 6254-6255.	3.2	44
101	Ligand Binding and Substrate Discrimination by UDP-Galactopyranose Mutase. Journal of Molecular Biology, 2009, 391, 327-340.	4.2	43
102	Antigen structure affects cellular routing through DC-SIGN. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14862-14867.	7.1	43
103	Synthesis of a multivalent display of a CD22-binding trisaccharide. Carbohydrate Research, 2002, 337, 1605-1613.	2.3	41
104	Parallel Synthesis of Glycomimetic Libraries:  Targeting a C-Type Lectin. Organic Letters, 2003, 5, 1407-1410.	4.6	41
105	Glycan-Modified Virus-like Particles Evoke T Helper Type 1-like Immune Responses. ACS Nano, 2021, 15, 309-321.	14.6	40
106	Stereoelectronic Effects Impact Glycan Recognition. Journal of the American Chemical Society, 2020, 142, 2386-2395.	13.7	39
107	Synthesis of sulfated trisaccharide ligands for the selectins. Tetrahedron, 1997, 53, 16391-16422.	1.9	38
108	A Strategy for the Synthesis of Sulfated Peptides. Angewandte Chemie - International Edition, 2002, 41, 3449-3451.	13.8	38

7

#	Article	IF	CITATIONS
109	Fluorosugar Chain Termination Agents as Probes of the Sequence Specificity of a Carbohydrate Polymerase. Journal of the American Chemical Society, 2012, 134, 6552-6555.	13.7	38
110	Structure-activity relationships of 6-(heterocyclyl)-methylene penam sulfones. A new class of .BETAlactamase inhibitors Journal of Antibiotics, 1987, 40, 803-822.	2.0	37
111	Further investigations of the type II diels-alder route to the bicyclic core of esperamicin/calichemicin reveal a regiochemical misassignment: Meta vs. para selectivity. Tetrahedron Letters, 1989, 30, 433-436.	1.4	36
112	Transforming the cell surface through proteolysis. Chemistry and Biology, 1998, 5, R49-R62.	6.0	36
113	Designed potent multivalent chemoattractants for Escherichia coli. Bioorganic and Medicinal Chemistry, 2001, 9, 2387-2393.	3.0	36
114	Chemistry-driven glycoscience. Bioorganic and Medicinal Chemistry, 2018, 26, 5229-5238.	3.0	36
115	Para-chlorobenzyl protecting groups as stabilizers of the glycosidic linkage: Synthesis of the 3′-O-sulfated Lewis x trisaccharide. Tetrahedron Letters, 1997, 38, 6985-6988.	1.4	35
116	The Ecstasy and Agony of Assay Interference Compounds. ACS Medicinal Chemistry Letters, 2017, 8, 379-382.	2.8	35
117	ROMP from ROMP: A New Approach to Graft Copolymer Synthesis. Macromolecules, 2009, 42, 4023-4027.	4.8	34
118	Virtual Screening for UDP-Galactopyranose Mutase Ligands Identifies a New Class of Antimycobacterial Agents. ACS Chemical Biology, 2015, 10, 2209-2218.	3.4	34
119	Structures of Xenopus Embryonic Epidermal Lectin Reveal a Conserved Mechanism of Microbial Glycan Recognition. Journal of Biological Chemistry, 2016, 291, 5596-5610.	3.4	33
120	Bacterial Cell Wall Modification with a Glycolipid Substrate. Journal of the American Chemical Society, 2019, 141, 9262-9272.	13.7	33
121	CHâ [∽] Ï€ Interactions in Glycan Recognition. ACS Chemical Biology, 2021, 16, 1884-1893.	3.4	33
122	Bioactive Polymers. Topics in Organometallic Chemistry, 1998, , 199-231.	0.7	32
123	A Processive Carbohydrate Polymerase That Mediates Bifunctional Catalysis Using a Single Active Site. Biochemistry, 2012, 51, 1148-1159.	2.5	32
124	Training the next generation of biomedical investigators in glycosciences. Journal of Clinical Investigation, 2016, 126, 405-408.	8.2	32
125	Conserved Amplification of Chemotactic Responses through Chemoreceptor Interactions. Journal of Bacteriology, 2002, 184, 4981-4987.	2.2	29
126	Angiomotin Regulates YAP Localization during Neural Differentiation of Human Pluripotent Stem Cells. Stem Cell Reports, 2019, 12, 869-877.	4.8	29

8

#	Article	IF	CITATIONS
127	Tin-mediated phosphorylation: Synthesis and selectin binding of a phospho Lewis a analog. Tetrahedron Letters, 1996, 37, 1953-1956.	1.4	28
128	p-Methoxybenzyl Ether Cleavage by Polymer-Supported Sulfonamides. Organic Letters, 2002, 4, 1131-1133.	4.6	28
129	Link between Chemotactic Response to Ni2+and its Adsorption onto theEscherichia coliCell Surface. Environmental Science & Technology, 2005, 39, 5227-5233.	10.0	27
130	Potent Ligands for Prokaryotic UDP-Galactopyranose Mutase That Exploit an Enzyme Subsite. Organic Letters, 2009, 11, 193-196.	4.6	27
131	Synthesis of galactofuranose-based acceptor substrates for the study of the carbohydrate polymerase GlfT2. Bioorganic and Medicinal Chemistry, 2010, 18, 3753-3759.	3.0	27
132	Chemical Probes of Bacterial Signal Transduction Reveal That Repellents Stabilize and Attractants Destabilize the Chemoreceptor Array. ACS Chemical Biology, 2008, 3, 101-109.	3.4	25
133	Structure-Based Design of a Periplasmic Binding Protein Antagonist that Prevents Domain Closure. ACS Chemical Biology, 2009, 4, 447-456.	3.4	25
134	Peptide ligands that use a novel binding site to target both TGF-Î ² receptors. Molecular BioSystems, 2010, 6, 2392.	2.9	25
135	Chemoselective, Postpolymerization Modification of Bioactive, Degradable Polymers. Biomacromolecules, 2019, 20, 1018-1027.	5.4	23
136	Synthetic Glycomacromolecules of Defined Valency, Absolute Configuration, and Topology Distinguish between Human Lectins. Jacs Au, 2021, 1, 1621-1630.	7.9	23
137	Protein Footprinting in a Complex Milieu: Identifying the Interaction Surfaces of the Chemotaxis Adaptor Protein CheW. Journal of Molecular Biology, 2011, 409, 483-495.	4.2	22
138	UDP-Galactopyranose Mutase in Nematodes. Biochemistry, 2013, 52, 4391-4398.	2.5	21
139	Synthetic Antigens Reveal Dynamics of BCR Endocytosis during Inhibitory Signaling. ACS Chemical Biology, 2014, 9, 202-210.	3.4	21
140	Stereochemical Control Yields Mucin Mimetic Polymers. ACS Central Science, 2021, 7, 624-630.	11.3	21
141	Solid-Phase Synthesis of Alkanethiols for the Preparation of Self-Assembled Monolayers. Langmuir, 2007, 23, 11164-11167.	3.5	20
142	An Asymmetric Synthesis of l-Pyrrolysine. Organic Letters, 2012, 14, 1378-1381.	4.6	20
143	The Ecstasy and Agony of Assay Interference Compounds. Journal of Chemical Information and Modeling, 2017, 57, 387-390.	5.4	20
144	Isotopeâ€Coded Affinity Tags with Tunable Reactivities for Protein Footprinting. Angewandte Chemie - International Edition, 2008, 47, 9677-9680.	13.8	19

#	Article	IF	CITATIONS
145	Multivalency in Protein–Carbohydrate Recognition. , 2008, , 2483-2523.		19
146	Small-Molecule-Modified Surfaces Engage Cells through the α _v β ₃ Integrin. ACS Chemical Biology, 2012, 7, 518-525.	3.4	19
147	Convergent synthesis of sulfated bivalent glycopeptides as selectin ligands. Tetrahedron Letters, 1996, 37, 2907-2910.	1.4	18
148	Preparation of (r)-(+)-7-oxabicyclo[2.2.1]hept-5-ene-exo-2-carboxylic acid, a precursor to substrates for the ring opening metathesis polymerization. Tetrahedron Letters, 1996, 37, 8853-8856.	1.4	18
149	Isoprenoid Phosphonophosphates as Glycosyltransferase Acceptor Substrates. Journal of the American Chemical Society, 2014, 136, 8492-8495.	13.7	18
150	Biosynthetic Glycan Labeling. Journal of the American Chemical Society, 2021, 143, 16337-16342.	13.7	18
151	Glycomimetic Building Blocks: A Divergent Synthesis of Epimers of Shikimic Acid. Organic Letters, 2011, 13, 3790-3793.	4.6	17
152	Carboxylate Surrogates Enhance the Antimycobacterial Activity of UDP-Galactopyranose Mutase Probes. ACS Infectious Diseases, 2016, 2, 538-543.	3.8	17
153	A Strategy for the Synthesis of Sulfated Peptides. Angewandte Chemie, 2002, 114, 3599-3601.	2.0	16
154	N-Acylsulfonamide Linker Activation by Pd-Catalyzed Allylation. Organic Letters, 2006, 8, 2483-2485.	4.6	16
155	Improved Chemical Syntheses of 1- and 5-Deazariboflavin. Journal of Organic Chemistry, 2004, 69, 2614-2617.	3.2	15
156	Synthesis of Cyclic Sulfates by Halocyclization. Organic Letters, 2001, 3, 3557-3559.	4.6	14
157	The Ecstasy and Agony of Assay Interference Compounds. ACS Chemical Biology, 2017, 12, 575-578.	3.4	14
158	Polysaccharide length affects mycobacterial cell shape and antibiotic susceptibility. Science Advances, 2020, 6, .	10.3	14
159	Distinguishing Galactoside Isomers with Mass Spectrometry and Gas-Phase Infrared Spectroscopy. Journal of the American Chemical Society, 2021, 143, 10509-10513.	13.7	14
160	What lies ahead. Nature, 2011, 469, 23-25.	27.8	13
161	Comparing Galactan Biosynthesis in Mycobacterium tuberculosis and Corynebacterium diphtheriae. Journal of Biological Chemistry, 2017, 292, 2944-2955.	3.4	13
162	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	8.0	13

#	Article	IF	CITATIONS
163	Human intelectin-1 (ITLN1) genetic variation and intestinal expression. Scientific Reports, 2021, 11, 12889.	3.3	13
164	Multivalency in Biological Systems. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2003, , 345-357.	0.1	13
165	Fidelity and Promiscuity of a Mycobacterial Clycosyltransferase. Journal of the American Chemical Society, 2016, 138, 9205-9211.	13.7	12
166	Synthesis of Lipid-Linked Arabinofuranose Donors for Glycosyltransferases. Journal of Organic Chemistry, 2013, 78, 2128-2133.	3.2	11
167	Polymers at the Interface with Biology. Biomacromolecules, 2018, 19, 3151-3162.	5.4	10
168	Advances in glycoscience to understand viral infection and colonization. Nature Methods, 2022, 19, 384-387.	19.0	10
169	Forces of Change: Mechanics Underlying Formation of Functional 3D Organ Buds. Cell Stem Cell, 2015, 16, 453-454.	11.1	9
170	The Chemistry and Biology of Multivalent Saccharide Displays. , 2001, , 221-275.		9
171	Solution conformation of Lewis a-derived selectin ligands is unaffected by anionic substituents at the 3'- and 6'- positions. Glycobiology, 1997, 7, 337-347.	2.5	8
172	Unexpected Enhancement in Biological Activity of a GPCR Ligand Induced by an Oligoethylene Glycol Substituent. Journal of the American Chemical Society, 2010, 132, 8844-8845.	13.7	8
173	A Path to Complex Carbohydrates. Science, 2013, 341, 357-358.	12.6	8
174	The Ecstasy and Agony of Assay Interference Compounds. ACS Chemical Neuroscience, 2017, 8, 420-423.	3.5	8
175	The Ecstasy and Agony of Assay Interference Compounds. Biochemistry, 2017, 56, 1363-1366.	2.5	8
176	Modular Polymer Antigens To Optimize Immunity. Biomacromolecules, 2019, 20, 4370-4379.	5.4	7
177	Multivalency in Protein-Carbohydrate Recognition. , 2001, , 1817-1861.		7
178	Multivalency in Protein-Carbohydrate Recognition. , 2001, , 1817-1861.		6
179	Synthetic Multivalent Carbohydrate Ligands as Effectors or Inhibitors of Biological Processes. , 2005, , 575-608.		6
180	Synthetic Science: Assembly Required. ACS Chemical Biology, 2008, 3, 1-2.	3.4	6

#	Article	IF	CITATIONS
181	Bifunctional Peptide that Anneals to Damaged Collagen and Clusters TGF-Î ² Receptors Enhances Wound Healing. ACS Chemical Biology, 2022, 17, 314-321.	3.4	6
182	Visualization of Single Multivalent Receptor-Ligand Complexes by Transmission Electron Microscopy The authors thank Colleen Lavin (UW Madison, Microscopy Resource) and Kim Dickson for experimental support. This work was supported in part by the NIH (GM 55984). J.E.G. acknowledges the NIH Biotechnology Training Grant for support (T32GM08349). L.E.S. was supported by an NIH predoctoral fellowship (GM 18750) Angewandte Chemie - International Edition, 2000, 39, 4567-4570.	13.8	6
183	Recasting Biomolecules for Function. ACS Chemical Biology, 2012, 7, 1-2.	3.4	5
184	Probing and Perturbing Stem Cells with Chemical Biology. ACS Chemical Biology, 2014, 9, 1-2.	3.4	5
185	The non-detergent sulfobetaine-201 acts as a pharmacological chaperone to promote folding and crystallization of the type II TGF-β receptor extracellular domain. Protein Expression and Purification, 2015, 115, 19-25.	1.3	5
186	ChemRXiv: A Chemistry Preprint Server. ACS Nano, 2016, 10, 9053-9054.	14.6	5
187	Voices in methods development. Nature Methods, 2019, 16, 945-951.	19.0	5
188	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	8.0	5
189	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	9.1	5
190	Nanoscience and Nanotechnology Cross Borders. ACS Nano, 2017, 11, 1123-1126.	14.6	4
191	The Ecstasy and Agony of Assay Interference Compounds. ACS Infectious Diseases, 2017, 3, 259-262.	3.8	4
192	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	4.6	4
193	Visualization and Characterization of Receptor Clusters by Transmission Electron Microscopy. Methods in Enzymology, 2003, 362, 301-312.	1.0	3
194	Fighting the Coronavirus Outbreak. ACS Chemical Biology, 2020, 15, 799-801.	3.4	3
195	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	13.7	3
196	Fostering Major Breakthroughs. ACS Chemical Biology, 2006, 1, 1-2.	3.4	2
197	Classifying chemoreceptors: quantity versus quality. EMBO Journal, 2010, 29, 3435-3436.	7.8	2
198	Conformational Control of UDP-Galactopyranose Mutase Inhibition. Biochemistry, 2017, 56, 3983-3992.	2.5	2

#	Article	IF	CITATIONS
199	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	14.6	2
200	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	14.6	2
201	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	47.7	2
202	Scientific Response to the Coronavirus Crisis in Spain: Collaboration and Multidisciplinarity. ACS Chemical Biology, 2020, 15, 1722-1723.	3.4	2
203	Biosynthetic incorporation for visualizing bacterial glycans. Methods in Enzymology, 2022, 665, 135-151.	1.0	2
204	Time to Think. ACS Chemical Biology, 2007, 2, 1-2.	3.4	1
205	Flow Cytometry Reveals that Multivalent Chemoattractants Effect Swarmer Cell Dedifferentiation. ACS Chemical Biology, 2009, 4, 828-833.	3.4	1
206	Decoding Signals with Chemical Biology. ACS Chemical Biology, 2010, 5, 1-2.	3.4	1
207	Bioconjugates and Chemical Biology. Bioconjugate Chemistry, 2016, 27, 1429-1429.	3.6	1
208	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	17.4	1
209	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	8.7	1
210	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	2.3	1
211	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	4.6	1
212	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	11.3	1
213	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	2.8	1
214	Advancing Chemical Microbiology. ACS Chemical Biology, 2020, 15, 1115-1118.	3.4	1
215	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	3.0	1
216	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	11.2	1

#	Article	IF	CITATIONS
217	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	13.7	1
218	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	2.6	1
219	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	3.0	1
220	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	5.2	1
221	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	3.5	1
222	UDPâ€galactopyranose mutase: an unexpected ligandâ€binding mode leads to model of substrate binding. FASEB Journal, 2008, 22, 1012.9.	0.5	1
223	The Molecular Recognition of Saccharides and Glycoprotein-Inspired Materials. , 1998, , 183-212.		1
224	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	4.6	1
225	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	3.5	1
226	In vitro and in vivo inhibition of anti-gal secreting cells. Transplantation Proceedings, 2000, 32, 856.	0.6	0
227	Controlling Cellular Responses with Multivalent Ligands. Nippon Nogeikagaku Kaishi, 2004, 78, 1159-1159.	0.0	Ο
228	Symbiosis: Chemical Biology at Wisconsin. ACS Chemical Biology, 2006, 1, 481-484.	3.4	0
229	A Higher Degree of Difficulty. ACS Chemical Biology, 2007, 2, 197-199.	3.4	Ο
230	Classifying chemoreceptors: quantity versus quality. EMBO Journal, 2010, 29, 4237-4237.	7.8	0
231	A Symposium in Honor of Peter B. Dervan, the 2014 <i>ACS Chemical Biology</i> Lectureship Award Winner. ACS Chemical Biology, 2014, 9, 1221-1223.	3.4	Ο
232	ChemRXiv: A Chemistry Preprint Server. ACS Chemical Biology, 2016, 11, 2937-2937.	3.4	0
233	Focus on Epigenetics. ACS Chemical Biology, 2016, 11, 541-542.	3.4	0
234	Deleterious Consequences of UDP-Galactopyranose Mutase Inhibition for Nematodes. ACS Chemical Biology, 2017, 12, 2354-2361.	3.4	0

#	Article	IF	CITATIONS
235	Taxation on Innovation. ACS Chemical Biology, 2017, 12, 2915-2915.	3.4	Ο
236	Spotlight: A Conversation with Laura Kiessling and Jennifer Doudna. ACS Chemical Biology, 2018, 13, 290-295.	3.4	0
237	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	4.9	0
238	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	2.5	0
239	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	5.2	0
240	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	11.3	0
241	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	3.4	Ο
242	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	3.5	0
243	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	2.7	Ο
244	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	4.8	0
245	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		Ο
246	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	6.6	0
247	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	4.9	Ο
248	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	6.7	0
249	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	6.5	Ο
250	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	6.7	0
251	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	3.7	0
252	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	3.5	0

#	Article	IF	CITATIONS
253	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	4.4	Ο
254	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
255	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	2.8	0
256	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
257	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	5.1	0
258	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	3.7	0
259	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	3.0	Ο
260	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	2.8	0
261	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	5.1	Ο
262	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	7.8	0
263	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	2.5	Ο
264	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.9	0
265	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	2.7	Ο
266	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	3.5	0
267	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	4.3	Ο
268	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	3.1	0
269	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	4.6	0
270	When the Others Become Us: A Chemist's Perspective of the COVID-19 Outbreak in Italy. ACS Chemical Biology, 2020, 15, 1279-1281.	3.4	0

#	Article	IF	CITATIONS
271	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	3.8	Ο
272	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	5.1	0
273	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	5.3	Ο
274	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	3.2	0
275	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	6.5	Ο
276	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	2.3	0
277	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	2.7	Ο
278	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	6.7	0
279	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	6.7	0
280	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	3.3	0
281	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	4.0	Ο
282	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	5.0	0
283	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	4.4	Ο
284	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	3.4	0
285	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	5.3	Ο
286	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	5.4	0
287	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	6.4	0
288	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	4.8	0

#	Article	IF	CITATIONS
289	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	2.3	Ο
290	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	15.6	0
291	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	2.5	0
292	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	17.4	0
293	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	5.4	0
294	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	3.7	0
295	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	5.2	0
296	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	2.6	0
297	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	3.6	0
298	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	5.0	0
299	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	3.0	0
300	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	3.8	0
301	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.9	0
302	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	3.6	0
303	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	2.1	0
304	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	3.3	0
305	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	5.1	0
306	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	4.6	0

#	Article	IF	CITATIONS
307	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	3.2	Ο
308	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	2.8	0
309	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	15.6	0
310	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	5.4	0
311	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	47.7	0
312	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	10.0	0
313	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	3.5	0
314	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	4.6	0
315	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	3.8	0
316	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	6.4	0
317	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	2.5	0
318	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	9.1	0
319	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	7.8	0
320	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	5.4	0
321	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	3.7	0
322	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	4.0	0
323	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	2.3	0
324	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	4.6	0

#	Article	IF	CITATIONS
325	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	7.6	Ο
326	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	4.6	0
327	ACS Chemical Biology Special Issue on Epigenetics – Call for Papers. ACS Chemical Biology, 2021, 16, 1-1.	3.4	Ο
328	Special Issue on Chemical Glycobiology. ACS Chemical Biology, 2021, 16, 1793-1794.	3.4	0
329	Small molecule probes of mycobacterial cell wall assembly. FASEB Journal, 2008, 22, 532.3.	0.5	Ο
330	The polymerase activity of a mycobacterial galactofuranosyltransferase suggests a novel mechanism for templateâ€independent processive polymerization. FASEB Journal, 2008, 22, 1059.2.	0.5	0
331	Human Embryonic Stem Cells Maintain Pluripotency after Eâ€Cadherin Expression Knockdown. FASEB Journal, 2010, 24, lb172.	0.5	Ο
332	Tailored Synthetic Surfaces to Control Human Pluripotent Stem Cell Self-Renewal. , 2012, , 155-165.		0
333	A defined glycosaminoglycanâ€binding surface facilitates endoderm differentiation of human embryonic stem cells. FASEB Journal, 2013, 27, 594.5.	0.5	Ο
334	Signals from the Surface to Control Cell Fate Decisions. FASEB Journal, 2013, 27, 213.3.	0.5	0
335	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	4.3	Ο
336	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	5.2	0
337	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	2.7	Ο
338	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	8.7	0
339	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	Ο
340	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	3.8	0
341	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	4.6	0
342	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	3.1	0

#	Article	IF	CITATIONS
343	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	4.8	0
344	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	6.6	0
345	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	10.0	0
346	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	2.1	0