
Jianmin Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8751140/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxygen-implanted MoS ₂ nanosheets promoting quinoline synthesis from nitroarenes and aliphatic alcohols <i>via</i> an integrated oxidation transfer hydrogenation–cyclization mechanism. Green Chemistry, 2022, 24, 1704-1713.	9.0	7
2	Selective CO ₂ Reduction to Formate on a Zn-Based Electrocatalyst Promoted by Tellurium. Chemistry of Materials, 2022, 34, 6036-6047.	6.7	15
3	Modification of Ni ₃ N with a Cobalt-Doped Carbon Shell for High-Performance Hydrogen Evolution in Alkaline Media. ACS Sustainable Chemistry and Engineering, 2021, 9, 1994-2002.	6.7	19
4	Ambient sunlight-driven photothermal methanol dehydrogenation for syngas production with 32.9 % solar-to-hydrogen conversion efficiency. IScience, 2021, 24, 102056.	4.1	12
5	In situ Dispersed Nano-Au on Zr-Suboxides as Active Cathode for Direct CO2 Electroreduction in Solid Oxide Electrolysis Cells. Nano Letters, 2021, 21, 6952-6959.	9.1	10
6	Photocatalytic Coproduction of Deoxybenzoin and H ₂ through Tandem Redox Reactions. ACS Catalysis, 2020, 10, 762-769.	11.2	55
7	Lithium–Sulfur Batteries: Dualâ€Functional Atomic Zinc Decorated Hollow Carbon Nanoreactors for Kinetically Accelerated Polysulfides Conversion and Dendrite Free Lithium Sulfur Batteries (Adv.) Tj ETQq1 1 0.	7843ib4argBT	/Øverlock]
8	Efficient Production of Nitrones via One-Pot Reductive Coupling Reactions Using Bimetallic RuPt NPs. ACS Catalysis, 2020, 10, 13701-13709.	11.2	13
9	Dualâ€Functional Atomic Zinc Decorated Hollow Carbon Nanoreactors for Kinetically Accelerated Polysulfides Conversion and Dendrite Free Lithium Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2002271.	19.5	137
10	Photo splitting of bio-polyols and sugars to methanol and syngas. Nature Communications, 2020, 11, 1083.	12.8	72
11	Enhanced photocatalytic alkane production from fatty acid decarboxylation via inhibition of radical oligomerization. Nature Catalysis, 2020, 3, 170-178.	34.4	93
12	Single Atom Alloy Preparation and Applications in Heterogeneous Catalysis. Chinese Journal of Chemistry, 2019, 37, 977-988.	4.9	47
13	Photocatalytic Cleavage of Aryl Ether in Modified Lignin to Non-phenolic Aromatics. ACS Catalysis, 2019, 9, 8843-8851.	11.2	55
14	Capping experiments reveal multiple surface active sites in CeO ₂ and their cooperative catalysis. RSC Advances, 2019, 9, 15229-15237.	3.6	17
15	Visible-light-driven coproduction of diesel precursors and hydrogen from lignocellulose-derived methylfurans. Nature Energy, 2019, 4, 575-584.	39.5	268
16	Investigation of solvent effects on the hydrodeoxygenation of guaiacol over Ru catalysts. Catalysis Science and Technology, 2019, 9, 6253-6273.	4.1	28
17	Acid-Promoter-Free Ethylene Methoxycarbonylation over Ru-Clusters/Ceria: The Catalysis of Interfacial Lewis Acid–Base Pair. Journal of the American Chemical Society, 2018, 140, 4172-4181.	13.7	157
18	Photocatalytic Cleavage of C–C Bond in Lignin Models under Visible Light on Mesoporous Graphitic Carbon Nitride through π–π Stacking Interaction. ACS Catalysis, 2018, 8, 4761-4771.	11.2	205

Jianmin Lu

#	Article	IF	CITATIONS
19	Pr-Doped CeO ₂ Catalyst in the Prins Condensation–Hydrolysis Reaction: Are All of the Defect Sites Catalytically Active?. ACS Catalysis, 2018, 8, 2635-2644.	11.2	64
20	NH ₂ OH–Mediated Lignin Conversion to Isoxazole and Nitrile. ACS Sustainable Chemistry and Engineering, 2018, 6, 3748-3753.	6.7	39
21	Generation and Confinement of Long-Lived <i>N</i> -Oxyl Radical and Its Photocatalysis. Journal of the American Chemical Society, 2018, 140, 2032-2035.	13.7	89
22	Carbon Modification of Nickel Catalyst for Depolymerization of Oxidized Lignin to Aromatics. ACS Catalysis, 2018, 8, 1614-1620.	11.2	134
23	Yin and Yang Dual Characters of CuO _{<i>x</i>} Clusters for C–C Bond Oxidation Driven by Visible Light. ACS Catalysis, 2017, 7, 3850-3859.	11.2	103
24	Visible-Light-Driven Self-Hydrogen Transfer Hydrogenolysis of Lignin Models and Extracts into Phenolic Products. ACS Catalysis, 2017, 7, 4571-4580.	11.2	191
25	Promoting Lignin Depolymerization and Restraining the Condensation via an Oxidationâ ^{~^} Hydrogenation Strategy. ACS Catalysis, 2017, 7, 3419-3429.	11.2	172
26	Oxidative C(OH) C bond cleavage of secondary alcohols to acids over a copper catalyst with molecular oxygen as the oxidant. Journal of Catalysis, 2017, 348, 160-167.	6.2	72
27	Photocatalytic coupling of amines to imidazoles using a Mo–ZnIn ₂ S ₄ catalyst. Green Chemistry, 2017, 19, 5172-5177.	9.0	44
28	Synthesis of 1,3-Diols from Isobutene and HCHO via Prins Condensation-Hydrolysis Using CeO2 Catalysts: Effects of Crystal Plane and Oxygen Vacancy. Inorganics, 2017, 5, 75.	2.7	5
29	Pd ₂ Sn [010] nanorods as a highly active and stable ethanol oxidation catalyst. Journal of Materials Chemistry A, 2016, 4, 16706-16713.	10.3	65
30	Cleavage of the lignin β-O-4 ether bond via a dehydroxylation–hydrogenation strategy over a NiMo sulfide catalyst. Green Chemistry, 2016, 18, 6545-6555.	9.0	80
31	Two-Step, Catalytic C–C Bond Oxidative Cleavage Process Converts Lignin Models and Extracts to Aromatic Acids. ACS Catalysis, 2016, 6, 6086-6090.	11.2	207
32	Epoxide hydrolysis and alcoholysis reactions over crystalline Mo–V–O oxide. RSC Advances, 2016, 6, 70842-70847.	3.6	11
33	β-O-4 Bond Cleavage Mechanism for Lignin Model Compounds over Pd Catalysts Identified by Combination of First-Principles Calculations and Experiments. ACS Catalysis, 2016, 6, 5589-5598.	11.2	116
34	Transfer hydrogenation of nitroarenes to arylamines catalysed by an oxygen-implanted MoS 2 catalyst. Applied Catalysis A: General, 2016, 525, 85-93.	4.3	31
35	Conversion of Isobutene and Formaldehyde to Diol using Praseodymium-Doped CeO ₂ Catalyst. ACS Catalysis, 2016, 6, 8248-8254.	11.2	55
36	Ethylene glycol reforming on Pt(111): first-principles microkinetic modeling in vapor and aqueous phases. Catalysis Science and Technology, 2016, 6, 8242-8256.	4.1	35

Jianmin Lu

#	Article	IF	CITATIONS
37	Solvation Effects in the Hydrodeoxygenation of Propanoic Acid over a Model Pd(211) Catalyst. Journal of Physical Chemistry C, 2016, 120, 2724-2736.	3.1	40
38	Transfer hydrogenation of nitroarenes with hydrazine at near-room temperature catalysed by a MoO ₂ catalyst. Green Chemistry, 2016, 18, 2435-2442.	9.0	72
39	Solvent effects in the liquid phase hydrodeoxygenation of methyl propionate over a Pd(1 1 1) catalyst model. Journal of Catalysis, 2016, 333, 171-183.	6.2	37
40	The cascade synthesis of α,β-unsaturated ketones via oxidative C–C coupling of ketones and primary alcohols over a ceria catalyst. Catalysis Science and Technology, 2016, 6, 1693-1700.	4.1	32
41	Cuprous Oxide Catalyzed Oxidative CC Bond Cleavage for CN Bond Formation: Synthesis of Cyclic Imides from Ketones and Amines. Angewandte Chemie - International Edition, 2015, 54, 14061-14065.	13.8	37
42	Theoretical Investigation of the Reaction Mechanism of the Guaiacol Hydrogenation over a Pt(111) Catalyst. ACS Catalysis, 2015, 5, 2423-2435.	11.2	111
43	The cascade synthesis of quinazolinones and quinazolines using an α-MnO ₂ catalyst and tert-butyl hydroperoxide (TBHP) as an oxidant. Chemical Communications, 2015, 51, 9205-9207.	4.1	120
44	An investigation of the effects of CeO2 crystal planes on the aerobic oxidative synthesis of imines from alcohols and amines. Chinese Journal of Catalysis, 2015, 36, 1623-1630.	14.0	52
45	Theoretical investigation of the reaction mechanism of the hydrodeoxygenation of guaiacol over a Ru(0 0 0 1) model surface. Journal of Catalysis, 2015, 321, 39-50.	6.2	100
46	Theoretical investigation of the hydrodeoxygenation of methyl propionate over Pd (111) model surfaces. Catalysis Science and Technology, 2014, 4, 3981-3992.	4.1	18
47	Solvent effects on the hydrodeoxygenation of propanoic acid over Pd(111) model surfaces. Green Chemistry, 2014, 16, 605-616.	9.0	51
48	Point defects and mechanical behavior of titanium alloys and intermetallic compounds. Journal of Physics: Conference Series, 2006, 29, 220-227.	0.4	8