Yoosoo Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8750583/publications.pdf

Version: 2024-02-01

201674 168389 3,084 65 27 53 h-index citations g-index papers 67 67 67 4457 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Potential of Bovine Colostrum-Derived Exosomes to Repair Aged and Damaged Skin Cells. Pharmaceutics, 2022, 14, 307.	4.5	15
2	Harnessing the Natural Healing Power of Colostrum: Bovine Milkâ€Derived Extracellular Vesicles from Colostrum Facilitating the Transition from Inflammation to Tissue Regeneration for Accelerating Cutaneous Wound Healing. Advanced Healthcare Materials, 2022, 11, e2102027.	7.6	22
3	Ultraefficient extracellular vesicle–guided direct reprogramming of fibroblasts into functional cardiomyocytes. Science Advances, 2022, 8, eabj6621.	10.3	16
4	Sustained Exosomeâ€Guided Macrophage Polarization Using Hydrolytically Degradable PEG Hydrogels for Cutaneous Wound Healing: Identification of Key Proteins and MiRNAs, and Sustained Release Formulation. Small, 2022, 18, e2200060.	10.0	54
5	Potential of Colostrum-Derived Exosomes for Promoting Hair Regeneration Through the Transition From Telogen to Anagen Phase. Frontiers in Cell and Developmental Biology, 2022, 10, 815205.	3.7	22
6	PDL1-binding peptide/anti-miRNA21 conjugate as a therapeutic modality for PD-L1high tumors and TAMs. Journal of Controlled Release, 2022, 345, 62-74.	9.9	6
7	Extracellular vesicle-guided in situ reprogramming of synovial macrophages for the treatment of rheumatoid arthritis. Biomaterials, 2022, 286, 121578.	11.4	16
8	Exosomes: Cell-Derived Nanoplatforms for the Delivery of Cancer Therapeutics. International Journal of Molecular Sciences, 2021, 22, 14.	4.1	89
9	Extracellular Vesicles as Potential Theranostic Platforms for Skin Diseases and Aging. Pharmaceutics, 2021, 13, 760.	4.5	8
10	Extracellular Vesicles as Potential Therapeutics for Inflammatory Diseases. International Journal of Molecular Sciences, 2021, 22, 5487.	4.1	18
11	A Trojan-Horse Strategy by <i>In Situ</i> Piggybacking onto Endogenous Albumin for Tumor-Specific Neutralization of Oncogenic MicroRNA. ACS Nano, 2021, 15, 11369-11384.	14.6	15
12	Multi-targeting siRNA nanoparticles for simultaneous inhibition of PI3K and Rac1 in PTEN-deficient prostate cancer. Journal of Industrial and Engineering Chemistry, 2021, 99, 196-203.	5.8	5
13	Nanoparticles Targeting Innate Immune Cells in Tumor Microenvironment. International Journal of Molecular Sciences, 2021, 22, 10009.	4.1	14
14	Recent Advances in Exosome-Based Drug Delivery for Cancer Therapy. Cancers, 2021, 13, 4435.	3.7	52
15	Dendritic cell activation by an E. coli-derived monophosphoryl lipid A enhances the efficacy of PD-1 blockade. Cancer Letters, 2020, 472, 19-28.	7.2	19
16	Investigation of the Potential Immunological Effects of Boiling Histotripsy for Cancer Treatment. Advanced Therapeutics, 2020, 3, 1900214.	3.2	13
17	Development of microRNA-21 mimic nanocarriers for the treatment of cutaneous wounds. Theranostics, 2020, 10, 3240-3253.	10.0	32
18	Xenogenization of tumor cells by fusogenic exosomes in tumor microenvironment ignites and propagates antitumor immunity. Science Advances, 2020, 6, .	10.3	36

#	Article	IF	Citations
19	Immunogenic clearance-mediated cancer vaccination. , 2020, , 549-568.		1
20	Versatile activatable vSIRPα-probe for cancer-targeted imaging and macrophage-mediated phagocytosis of cancer cells. Journal of Controlled Release, 2020, 323, 376-386.	9.9	16
21	Degradation of tumour stromal hyaluronan by small extracellular vesicleâ€PH20 stimulates CD103 ⁺ dendritic cells and in combination with PD‣1 blockade boosts antiâ€ŧumour immunity. Journal of Extracellular Vesicles, 2019, 8, 1670893.	12.2	47
22	Exosomeâ€Guided Phenotypic Switch of M1 to M2 Macrophages for Cutaneous Wound Healing. Advanced Science, 2019, 6, 1900513.	11.2	276
23	Intrinsic cancer vaccination. Advanced Drug Delivery Reviews, 2019, 151-152, 2-22.	13.7	30
24	Boiling Histotripsy-induced Partial Mechanical Ablation Modulates Tumour Microenvironment by Promoting Immunogenic Cell Death of Cancers. Scientific Reports, 2019, 9, 9050.	3.3	52
25	An optimized protocol to determine the engulfment of cancer cells by phagocytes using flow cytometry and fluorescence microscopy. Journal of Immunological Methods, 2019, 470, 27-32.	1.4	16
26	Dynamic Light Scattering Analysis to Dissect Intermediates of SNARE-Mediated Membrane Fusion. Methods in Molecular Biology, 2019, 1860, 53-69.	0.9	1
27	Extracellular vesicles as a platform for membraneâ€associated therapeutic protein delivery. Journal of Extracellular Vesicles, 2018, 7, 1440131.	12.2	168
28	Comparison of exosomes and ferritin protein nanocages for the delivery of membrane protein therapeutics. Journal of Controlled Release, 2018, 279, 326-335.	9.9	79
29	Nanocageâ€Therapeutics Prevailing Phagocytosis and Immunogenic Cell Death Awakens Immunity against Cancer. Advanced Materials, 2018, 30, 1705581.	21.0	55
30	Engineering nanoparticle strategies for effective cancer immunotherapy. Biomaterials, 2018, 178, 597-607.	11.4	117
31	Exosome as a Vehicle for Delivery of Membrane Protein Therapeutics, PH20, for Enhanced Tumor Penetration and Antitumor Efficacy. Advanced Functional Materials, 2018, 28, 1703074.	14.9	90
32	Soluble N-Ethylmaleimide-Sensitive Factor Attachment Protein Receptor-Derived Peptides for Regulation of Mast Cell Degranulation. Frontiers in Immunology, 2018, 9, 725.	4.8	15
33	Designed trimer-mimetic TNF superfamily ligands on self-assembling nanocages. Biomaterials, 2018, 180, 67-77.	11.4	22
34	Combined Rho-kinase inhibition and immunogenic cell death triggers and propagates immunity against cancer. Nature Communications, 2018, 9, 2165.	12.8	80
35	Abstract 5216: Exosome as a vehicle for delivery of membrane protein therapeutics, PH20 for enhanced tumor penetration and anti-tumor efficacy. , 2018 , , .		1
36	Exosome-SIRPα, a CD47 blockade increases cancer cell phagocytosis. Biomaterials, 2017, 121, 121-129.	11.4	263

#	Article	IF	Citations
37	Virusâ€Mimetic Fusogenic Exosomes for Direct Delivery of Integral Membrane Proteins to Target Cell Membranes. Advanced Materials, 2017, 29, 1605604.	21.0	95
38	Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. Journal of Controlled Release, 2017, 266, 8-16.	9.9	319
39	Ferritin nanocage with intrinsically disordered proteins and affibody: A platform for tumor targeting with extended pharmacokinetics. Journal of Controlled Release, 2017, 267, 172-180.	9.9	38
40	Harnessing designed nanoparticles: Current strategies and future perspectives in cancer immunotherapy. Nano Today, 2017, 17, 23-37.	11.9	69
41	Inositol pyrophosphates inhibit synaptotagmin-dependent exocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8314-8319.	7.1	41
42	A Chemical Controller of SNARE-Driven Membrane Fusion That Primes Vesicles for Ca ²⁺ -Triggered Millisecond Exocytosis. Journal of the American Chemical Society, 2016, 138, 4512-4521.	13.7	21
43	Dynamic light scattering analysis of SNARE-driven membrane fusion and the effects of SNARE-binding flavonoids. Biochemical and Biophysical Research Communications, 2015, 465, 864-870.	2.1	18
44	Display of membrane proteins on the heterologous caveolae carved by caveolin-1 in the Escherichia coli cytoplasm. Enzyme and Microbial Technology, 2015, 79-80, 55-62.	3.2	15
45	Synaptotagmin-1 Is an Antagonist for Munc18-1 in SNARE Zippering. Journal of Biological Chemistry, 2015, 290, 10535-10543.	3.4	18
46	Amyloid- \hat{l}^2 Oligomers May Impair SNARE-Mediated Exocytosis by Direct Binding to Syntaxin 1a. Cell Reports, 2015, 12, 1244-1251.	6.4	54
47	Abstract 11 : Molecular mechanisms of inverse association between cancer and Alzheimer's disease. , 2015, , .		1
48	Switch for the Necroptotic Permeation Pore. Structure, 2014, 22, 1374-1376.	3.3	6
49	Beta-Amyloid Oligomers Activate Apoptotic BAK Pore for Cytochrome c Release. Biophysical Journal, 2014, 107, 1601-1608.	0.5	29
50	SNARE zippering is hindered by polyphenols in the neuron. Biochemical and Biophysical Research Communications, 2014, 450, 831-836.	2.1	3
51	Inositol Pyrophosphates Inhibit Synaptotagmin-Dependent Exocytosis. Biophysical Journal, 2014, 106, 503a-504a.	0.5	0
52	Large $\hat{l}\pm$ -synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4087-4092.	7.1	233
53	Polyphenols differentially inhibit degranulation of distinct subsets of vesicles in mast cells by specific interaction with granule-type-dependent SNARE complexes. Biochemical Journal, 2013, 450, 537-546.	3.7	26
54	SNARE-Wedging Polyphenols as Small Molecular Botox. Planta Medica, 2012, 78, 233-236.	1.3	16

#	Article	IF	CITATIONS
55	A botulinum neurotoxin-like function ofPotentilla chinensisextract that inhibits neuronal SNARE complex formation, membrane fusion, neuroexocytosis, and muscle contraction. Pharmaceutical Biology, 2012, 50, 1157-1167.	2.9	6
56	pH-responsive high-density lipoprotein-like nanoparticles to release paclitaxel at acidic pH in cancer chemotherapy. International Journal of Nanomedicine, 2012, 7, 2805.	6.7	15
57	Single-Vesicle Fluorescence Study Reveals Dynamic Ca2+-Dependent Activity of Membrane-Anchored Synaptotagmin 1. Biophysical Journal, 2011, 100, 327a.	0.5	0
58	Synaptotagmin Expands Membrane Fusion Pore by Facilitating SNARE-Complex Formation. Biophysical Journal, 2011, 100, 185a.	0.5	0
59	Dynamic Ca ²⁺ -Dependent Stimulation of Vesicle Fusion by Membrane-Anchored Synaptotagmin 1. Science, 2010, 328, 760-763.	12.6	117
60	Dissection of SNARE-driven membrane fusion and neuroexocytosis by wedging small hydrophobic molecules into the SNARE zipper. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22145-22150.	7.1	47
61	Disulfide Bond as a Structural Determinant of Prion Protein Membrane Insertion. Molecules and Cells, 2009, 27, 673-680.	2.6	12
62	Towards a microarray of functional membrane proteins: Assembly of a surface-attachable, membrane-protein-anchored membrane structure using apolipoprotein A-1. Enzyme and Microbial Technology, 2009, 44, 217-222.	3.2	3
63	Assembly of Coenzyme Q10 nanostructure resembling nascent discoidal high density lipoprotein particle. Biochemical and Biophysical Research Communications, 2009, 388, 217-221.	2.1	9
64	A search for synthetic peptides that inhibit soluble <i>N</i> â€ethylmaleimide sensitiveâ€factor attachment receptorâ€mediated membrane fusion. FEBS Journal, 2008, 275, 3051-3063.	4.7	17
65	Deep membrane insertion of prion protein upon reduction of disulfide bond. Biochemical and Biophysical Research Communications, 2008, 377, 995-1000.	2.1	11