Jing-Hui Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8750427/publications.pdf Version: 2024-02-01

LING-HULZENC

#	Article	IF	CITATIONS
1	Ultrathin Co ₃ O ₄ Nanomeshes for the Oxygen Evolution Reaction. ACS Catalysis, 2018, 8, 1913-1920.	11.2	435
2	Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction. Journal of Materials Chemistry A, 2018, 6, 3211-3217.	10.3	376
3	Dibenzothiophene Dioxide Based Conjugated Microporous Polymers for Visible-Light-Driven Hydrogen Production. ACS Catalysis, 2018, 8, 8590-8596.	11.2	202
4	Facet enhanced photocatalytic effect with uniform single-crystalline zinc oxide nanodisks. Chemical Physics Letters, 2009, 472, 90-95.	2.6	162
5	Conjugated Microporous Polymers with Tunable Electronic Structure for High-Performance Potassium-Ion Batteries. ACS Nano, 2019, 13, 745-754.	14.6	162
6	Polyallylamine-Functionalized Platinum Tripods: Enhancement of Hydrogen Evolution Reaction by Proton Carriers. ACS Catalysis, 2017, 7, 452-458.	11.2	142
7	Bimetallic Platinum–Rhodium Alloy Nanodendrites as Highly Active Electrocatalyst for the Ethanol Oxidation Reaction. ACS Applied Materials & Interfaces, 2018, 10, 19755-19763.	8.0	132
8	Iron doped cobalt phosphide ultrathin nanosheets on nickel foam for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 20658-20666.	10.3	123
9	Morphological and Interfacial Control of Platinum Nanostructures for Electrocatalytic Oxygen Reduction. ACS Catalysis, 2016, 6, 5260-5267.	11.2	117
10	Hydrothermal Synthesis and Catalytic Application of Ultrathin Rhodium Nanosheet Nanoassemblies. ACS Applied Materials & Interfaces, 2016, 8, 33635-33641.	8.0	94
11	Substituent effect of conjugated microporous polymers on the photocatalytic hydrogen evolution activity. Journal of Materials Chemistry A, 2020, 8, 2404-2411.	10.3	91
12	Rhodium Nanosheets–Reduced Graphene Oxide Hybrids: A Highly Active Platinum-Alternative Electrocatalyst for the Methanol Oxidation Reaction in Alkaline Media. ACS Sustainable Chemistry and Engineering, 2017, 5, 10156-10162.	6.7	86
13	One-Pot Fabrication of Hollow and Porous Pd–Cu Alloy Nanospheres and Their Remarkably Improved Catalytic Performance for Hexavalent Chromium Reduction. ACS Applied Materials & Interfaces, 2016, 8, 30948-30955.	8.0	82
14	Glycerol oxidation assisted electrocatalytic nitrogen reduction: ammonia and glyceraldehyde co-production on bimetallic RhCu ultrathin nanoflake nanoaggregates. Journal of Materials Chemistry A, 2019, 7, 21149-21156.	10.3	77
15	Ultrathin Rhodium Oxide Nanosheet Nanoassemblies: Synthesis, Morphological Stability, and Electrocatalytic Application. ACS Applied Materials & Interfaces, 2017, 9, 17195-17200.	8.0	65
16	Platinum-Silver Alloy Nanoballoon Nanoassemblies with Super Catalytic Activity for the Formate Electrooxidation. ACS Applied Energy Materials, 2018, 1, 1252-1258.	5.1	50
17	Synthesis of sea-urchin shaped Î ³ -MnO2 nanostructures and their application in lithium batteries. Journal of Materials Chemistry, 2010, 20, 10915.	6.7	49
18	Component-Dependent Electrocatalytic Activity of Ultrathin PdRh Alloy Nanocrystals for the Formate Oxidation Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 2830-2836.	6.7	47

JING-HUI ZENG

#	Article	IF	CITATIONS
19	Sulfur in Hyper-cross-linked Porous Polymer as Cathode in Lithium–Sulfur Batteries with Enhanced Electrochemical Properties. ACS Applied Materials & Interfaces, 2017, 9, 34783-34792.	8.0	38
20	PdCo Alloy Nanonetworksâ^'Polyallylamine Inorganic–Organic Nanohybrids toward the Oxygen Reduction Reaction. Advanced Materials Interfaces, 2018, 5, 1701322.	3.7	37
21	A redox-active conjugated microporous polymer cathode for high-performance lithium/potassium-organic batteries. Science China Chemistry, 2021, 64, 72-81.	8.2	33
22	Graphite powder film-supported Cu ₂ S counter electrodes for quantum dot-sensitized solar cells. Journal of Materials Chemistry C, 2015, 3, 12140-12148.	5.5	30
23	Structure evolution of azo-fused conjugated microporous polymers for high performance lithium-ion batteries anodes. Journal of Power Sources, 2020, 453, 227868.	7.8	30
24	Stable, High-Efficiency Pyrrolidinium-Based Electrolyte for Solid-State Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 21381-21390.	8.0	29
25	Pulsed voltage deposited lead selenide thin film as efficient counter electrode for quantum-dot-sensitized solar cells. Applied Surface Science, 2016, 369, 436-442.	6.1	29
26	Facile preparation of MnO/nitrogen-doped porous carbon nanotubes composites and their application in energy storage. Journal of Power Sources, 2019, 426, 33-39.	7.8	28
27	Precursor, base concentration and solvent behavior on the formation of zinc silicate. Materials Research Bulletin, 2009, 44, 1106-1110.	5.2	26
28	Voltage-assisted SILAR deposition of CdSe quantum dots to construct a high performance of ZnS/CdSe/ZnS quantum dot-sensitized solar cells. Journal of Colloid and Interface Science, 2021, 586, 640-646.	9.4	24
29	Co nanoparticles supported on three-dimensionally N-doped holey graphene aerogels for electrocatalytic oxygen reduction. Journal of Colloid and Interface Science, 2020, 559, 143-151.	9.4	21
30	A novel organic ionic plastic crystal electrolyte for solid-state dye-sensitized solar cells. Electrochimica Acta, 2013, 112, 247-251.	5.2	20
31	Bisulfoneâ€Functionalized Organic Polymer Photocatalysts for Highâ€Performance Hydrogen Evolution. ChemSusChem, 2020, 13, 369-375.	6.8	20
32	Pulsed voltage deposited hierarchical dendritic PbS film as a highly efficient and stable counter electrode for quantum-dot-sensitized solar cells. Journal of Materials Chemistry C, 2018, 6, 6823-6831.	5.5	16
33	High-density arrays of low-defect-concentration zinc oxide nanowire grown on transparent conducting oxide glass substrate by chemical vapor deposition. Acta Materialia, 2009, 57, 1813-1820.	7.9	15
34	Silver/titania nanocable as fast electron transport channel for dye-sensitized solar cells. Electrochimica Acta, 2013, 87, 256-260.	5.2	15
35	Effective Solid Electrolyte Based on Benzothiazolium for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 22088-22095.	8.0	14
36	Performance enhancement in titania based quantum dot sensitized solar cells through incorporation of disc shaped ZnO nanoparticles into photoanode. Chemical Physics Letters, 2016, 660, 76-80.	2.6	14

JING-HUI ZENG

#	Article	IF	CITATIONS
37	Micrometer-Sized Fluorine Doped Tin Oxide As Fast Electron Collector for Enhanced Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 16593-16600.	8.0	12
38	Doping as an effective recombination suppressing strategy for performance enhanced quantum dots sensitized solar cells. Materials Letters, 2018, 221, 42-45.	2.6	12
39	Antimony tin oxide/lead selenide composite as efficient counter electrode material for quantum dot-sensitized solar cells. Journal of Colloid and Interface Science, 2021, 598, 492-499.	9.4	12
40	Pyrazolium-based electrolyte for solid-state dye-sensitized solar cells with high fill factor and open-circuit voltage. Journal of Materials Chemistry C, 2016, 4, 8235-8244.	5.5	10
41	<i>In situ</i> bubble template-assisted synthesis of phosphonate-functionalized Rh nanodendrites and their catalytic application. CrystEngComm, 2017, 19, 2946-2952.	2.6	10
42	Uniform single-crystalline zinc oxide round nanodisks, a comprehensive study on the hydrothermal growth. Materials Letters, 2012, 85, 7-10.	2.6	6
43	Above-Band-Gap Voltage from Oriented Bismuth Ferrite Ceramic Photovoltaic Cells. ACS Applied Energy Materials, 2021, 4, 12703-12708.	5.1	6
44	Synthesis of Mn-doped zinc blende CdSe nanocrystals for quantum dot-sensitized solar cells. Research on Chemical Intermediates, 2016, 42, 6255-6263.	2.7	5
45	Hydrothermal Synthesis and Photoluminescence Characterization of Eu ³⁺ â€Doped Silicate Phosphor. Journal of the American Ceramic Society, 2010, 93, 3478-3480.	3.8	4
46	Manganese doped titanium dioxide with a tunable flat-band potential as photoanode in quantum dot sensitized solar cells for higher open circuit voltage. Chemical Physics Letters, 2020, 761, 138099.	2.6	4
47	Phosphating passivation layer for quantum dot sensitized solar cells. Thin Solid Films, 2021, 727, 138678.	1.8	4
48	Alumina Coatings on Fluorine-Doped Tin Oxide@Titanium Dioxide as Photoanode for Dye-Sensitized Solar Cells. Electrochimica Acta, 2015, 173, 534-539.	5.2	3
49	Quantum dot sensitized solar cells: Light harvesting versus charge recombination, a film thickness consideration. Chemical Physics Letters, 2017, 682, 71-76.	2.6	3
50	S-alkylbenzothiophenium-based solid-state electrolyte for efficient quantum-dot sensitized solar cells. Solar Energy, 2019, 194, 286-293.	6.1	3
51	Efficient Solid-State Electrolytes Based on Aryl-Modified Imidazolium Ionic Crystals for Quantum Dot-Sensitized Solar Cells. ACS Applied Energy Materials, 2021, 4, 10739-10747.	5.1	2
52	Dye-sensitized solar cells with titania concave mirror. Materials Research Bulletin, 2014, 50, 221-226.	5.2	1
53	A Performance Enhancement by Ag/C Nanocables in Photo-Anodes for Dye-Sensitized Solar Cells. Energy and Environment Focus, 2014, 3, 360-365.	0.3	1