Mark A Frye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8749613/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A visual pathway for skylight polarization processing in Drosophila. ELife, 2021, 10, .	6.0	72
2	Odour boosts visual object approach in flies. Biology Letters, 2021, 17, 20200770.	2.3	6
3	Neuromodulation of insect motion vision. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2020, 206, 125-137.	1.6	28
4	Serotonergic modulation of visual neurons in Drosophila melanogaster. PLoS Genetics, 2020, 16, e1009003.	3.5	13
5	Fly eyes are not still: a motion illusion in <i>Drosophila</i> flight supports parallel visual processing. Journal of Experimental Biology, 2020, 223, .	1.7	10
6	Inhibitory Interactions and Columnar Inputs to an Object Motion Detector in Drosophila. Cell Reports, 2020, 30, 2115-2124.e5.	6.4	37
7	Non-canonical Receptive Field Properties and Neuromodulation of Feature-Detecting Neurons in Flies. Current Biology, 2020, 30, 2508-2519.e6.	3.9	36
8	Serotonergic modulation of visual neurons in Drosophila melanogaster. , 2020, 16, e1009003.		0
9	Serotonergic modulation of visual neurons in Drosophila melanogaster. , 2020, 16, e1009003.		0
10	Serotonergic modulation of visual neurons in Drosophila melanogaster. , 2020, 16, e1009003.		0
11	Serotonergic modulation of visual neurons in Drosophila melanogaster. , 2020, 16, e1009003.		0
12	Object features and T4/T5 motion detectors modulate the dynamics of bar tracking by <i>Drosophila</i> . Journal of Experimental Biology, 2019, 222, .	1.7	10
13	Visuomotor strategies for object approach and aversion in <i>Drosophila melanogaster</i> . Journal of Experimental Biology, 2019, 222, .	1.7	14
14	Drosophila Neuroscience: Should I Land or ShouldÂl Jump?. Current Biology, 2019, 29, R1089-R1091.	3.9	0
15	Cell-type-Specific Patterned Stimulus-Independent Neuronal Activity in the Drosophila Visual System during Synapse Formation. Neuron, 2019, 101, 894-904.e5.	8.1	55
16	Olfactory and Neuromodulatory Signals Reverse Visual Object Avoidance to Approach in Drosophila. Current Biology, 2019, 29, 2058-2065.e2.	3.9	32
17	Object-Detecting Neurons in Drosophila. Current Biology, 2017, 27, 680-687.	3.9	105
18	Visual Input to the Drosophila Central Complex by Developmentally and Functionally Distinct Neuronal Populations. Current Biology, 2017, 27, 1098-1110.	3.9	149

MARK A FRYE

#	Article	IF	CITATIONS
19	Drosophila Spatiotemporally Integrates Visual Signals to Control Saccades. Current Biology, 2017, 27, 2901-2914.e2.	3.9	49
20	Insect Vision: A Neuron that Anticipates an Object's Path. Current Biology, 2017, 27, R1076-R1078.	3.9	0
21	The eyes have it. ELife, 2017, 6, .	6.0	8
22	Group Behavior: Social Context Modulates Behavioral Responses to Sensory Stimuli. Current Biology, 2015, 25, R467-R469.	3.9	1
23	Olfactory Neuromodulation of Motion Vision Circuitry in Drosophila. Current Biology, 2015, 25, 467-472.	3.9	52
24	Neurons Forming Optic Glomeruli Compute Figure–Ground Discriminations in <i>Drosophila</i> . Journal of Neuroscience, 2015, 35, 7587-7599.	3.6	64
25	Elementary motion detectors. Current Biology, 2015, 25, R215-R217.	3.9	11
26	Figure-ground discrimination behavior in <i>Drosophila</i> . I. Spatial organization of wing steering responses. Journal of Experimental Biology, 2014, 217, 558-69.	1.7	32
27	Figure-ground discrimination behavior in <i>Drosophila</i> . II. Visual influences on head movement. Journal of Experimental Biology, 2014, 217, 570-9.	1.7	38
28	Method and software for using m-sequences to characterize parallel components of higher-order visual tracking behavior in Drosophila. Frontiers in Neural Circuits, 2014, 8, 130.	2.8	13
29	Higher-Order FigureÂDiscrimination in Fly and Human Vision. Current Biology, 2013, 23, R694-R700.	3.9	14
30	Drosophila Tracks Carbon Dioxide in Flight. Current Biology, 2013, 23, 301-306.	3.9	60
31	Visual Attention: A Cell that Focuses on One Object at a Time. Current Biology, 2013, 23, R61-R63.	3.9	4
32	Animal Behavior: Fly Flight Moves Forward. Current Biology, 2013, 23, R278-R279.	3.9	2
33	Flies dynamically anti-track, rather than ballistically escape, aversive odor during flight. Journal of Experimental Biology, 2012, 215, 2833-2840.	1.7	23
34	Binocular interactions underlying the classic optomotor responses of flying flies. Frontiers in Behavioral Neuroscience, 2012, 6, 6.	2.0	33
35	FigureÂTracking by Flies Is Supported by Parallel Visual Streams. Current Biology, 2012, 22, 482-487.	3.9	61
36	Odor identity influences tracking of temporally patterned plumes in Drosophila. BMC Neuroscience, 2011, 12, 62.	1.9	18

MARK A FRYE

#	Article	IF	CITATIONS
37	MEMS-enabled multi-unit neural recording from Drosophila melanogaster. , 2011, , .		О
38	An Olfactory Circuit Increases the Fidelity of Visual Behavior. Journal of Neuroscience, 2011, 31, 15035-15047.	3.6	35
39	Multisensory systems integration for high-performance motor control in flies. Current Opinion in Neurobiology, 2010, 20, 347-352.	4.2	27
40	Theta motion processing in fruit flies. Frontiers in Behavioral Neuroscience, 2010, 4, .	2.0	19
41	Mechanisms of odor-tracking: multiple sensors for enhanced perception and behavior. Frontiers in Cellular Neuroscience, 2010, 4, 6.	3.7	52
42	Mutation of the <i>Drosophila</i> vesicular GABA transporter disrupts visual figure detection. Journal of Experimental Biology, 2010, 213, 1717-1730.	1.7	48
43	Visual stabilization dynamics are enhanced by standing flight velocity. Biology Letters, 2010, 6, 410-413.	2.3	8
44	Multisensory integration for odor tracking by flyingDrosophila. Communicative and Integrative Biology, 2010, 3, 60-63.	1.4	23
45	Dynamics of optomotor responses in <i>Drosophila</i> to perturbations in optic flow. Journal of Experimental Biology, 2010, 213, 1366-1375.	1.7	66
46	Visually Mediated Odor Tracking During Flight in Drosophila. Journal of Visualized Experiments, 2009, , .	0.3	5
47	Neurogenetics and the "fly-stampede": dissecting neural circuits involved in visual behaviors. Fly, 2009, 3, 209-211.	1.7	1
48	The neuro-ecology of resource localization in Drosophila: Behavioral components of perception and search. Fly, 2009, 3, 50-61.	1.7	26
49	Invertebrate solutions for sensing gravity. Current Biology, 2009, 19, R186-R190.	3.9	25
50	Peripheral Visual Circuits Functionally Segregate Motion and Phototaxis Behaviors in the Fly. Current Biology, 2009, 19, 613-619.	3.9	66
51	Flies Require Bilateral Sensory Input to Track Odor Gradients in Flight. Current Biology, 2009, 19, 1301-1307.	3.9	133
52	Flies Require Bilateral Sensory Input to Track Odor Gradients in Flight. Current Biology, 2009, 19, 1774-1775.	3.9	3
53	Neurobiology: Fly Gyro-Vision. Current Biology, 2009, 19, R1119-R1121.	3.9	3
54	Animal Behavior: Flying Back to Front. Current Biology, 2008, 18, R169-R170.	3.9	1

Mark A Frye

#	Article	IF	CITATIONS
55	Crossmodal Visual Input for Odor Tracking during Fly Flight. Current Biology, 2008, 18, 270-275.	3.9	58
56	Flies see second-order motion. Current Biology, 2008, 18, R464-R465.	3.9	91
57	Context-dependent olfactory enhancement of optomotor flight control in <i>Drosophila</i> . Journal of Experimental Biology, 2008, 211, 2478-2485.	1.7	56
58	A Magnetic Tether System to Investigate Visual and Olfactory Mediated Flight Control in Drosophila. Journal of Visualized Experiments, 2008, , .	0.3	22
59	Visual Edge Orientation Shapes Free-Flight Behavior in Drosophila. Fly, 2007, 1, 153-154.	1.7	14
60	The spatial, temporal and contrast properties of expansion and rotation flight optomotor responses in <i>Drosophila</i> . Journal of Experimental Biology, 2007, 210, 3218-3227.	1.7	52
61	A Placebo-Controlled Evaluation of Adjunctive Modafinil in the Treatment of Bipolar Depression. American Journal of Psychiatry, 2007, 164, 1242-1249.	7.2	224
62	Free-Flight Odor Tracking in Drosophila Is Consistent with an Optimal Intermittent Scale-Free Search. PLoS ONE, 2007, 2, e354.	2.5	338
63	Behavioral Neurobiology: AÂVibrating Gyroscope Controls Fly Steering Maneuvers. Current Biology, 2007, 17, R134-R136.	3.9	11
64	Dynamic properties of large-field and small-field optomotor flight responses in Drosophila. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2007, 193, 787-799.	1.6	34
65	Bipolar disorder and comorbid alcoholism: prevalence rate and treatment considerations. Bipolar Disorders, 2006, 8, 677-685.	1.9	122
66	Molecular dynamics of cyclically contracting insect flight muscle in vivo. Nature, 2005, 433, 330-334.	27.8	85
67	Spatial organization of visuomotor reflexes in Drosophila. Journal of Experimental Biology, 2004, 207, 113-122.	1.7	151
68	Closing the loop between neurobiology and flight behavior in Drosophila. Current Opinion in Neurobiology, 2004, 14, 729-736.	4.2	48
69	Motor output reflects the linear superposition of visual and olfactory inputs in Drosophila. Journal of Experimental Biology, 2004, 207, 123-131.	1.7	83
70	Mechanosensory Integration for Flight Control in Insects. Frontiers in Neuroscience, 2004, , .	0.0	2
71	A signature of salience in the Drosophila brain. Nature Neuroscience, 2003, 6, 544-546.	14.8	2
72	Odor localization requires visual feedback during free flight inDrosophila melanogaster. Journal of Experimental Biology, 2003, 206, 843-855.	1.7	109

Mark A Frye

#	Article	IF	CITATIONS
73	Fly Flight. Neuron, 2001, 32, 385-388.	8.1	75
74	Effects of stretch receptor ablation on the optomotor control of lift in the hawkmothManduca sexta. Journal of Experimental Biology, 2001, 204, 3683-3691.	1.7	27
75	Encoding properties of the wing hinge stretch receptor in the hawkmothManduca sexta. Journal of Experimental Biology, 2001, 204, 3693-3702.	1.7	18
76	Sensory response patterns and the evolution of visual signal design in anoline lizards. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1999, 184, 585-607.	1.6	58
77	Visual receptive field properties of feature detecting neurons in the dragonfly. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1995, 177, 569.	1.6	40
78	Cell-Type Specific Patterned Stimulus-Independent Neuronal Activity in the Drosophila Visual System During Synapse Formation. SSRN Electronic Journal, 0, , .	0.4	1