Flemming Pociot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8748283/publications.pdf

Version: 2024-02-01

201 papers

11,316 citations

41344 49 h-index 99 g-index

213 all docs

213 docs citations

213 times ranked

17823 citing authors

#	Article	IF	CITATIONS
1	Differences in insulin sensitivity in the partial remission phase of childhood type 1 diabetes; a longitudinal cohort study. Diabetic Medicine, 2022, 39, e14702.	2.3	10
2	Diabetes complications and extracellular vesicle therapy. Reviews in Endocrine and Metabolic Disorders, 2022, 23, 357-385.	5.7	8
3	Does rapid sequence divergence preclude RNA structure conservation in vertebrates?. Nucleic Acids Research, 2022, 50, 2452-2463.	14.5	3
4	Anti-diabetic potential of Urtica Dioica: current knowledge and future direction. Journal of Diabetes and Metabolic Disorders, 2022, 21, 931-940.	1.9	5
5	Extracellular Vesicle Therapy for Type 1 Diabetes. Frontiers in Immunology, 2022, 13, 865782.	4.8	10
6	Genetic association study in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) identifies several potential risk loci. Brain, Behavior, and Immunity, 2022, 102, 362-369.	4.1	12
7	Genetic Variants Associated with Neuropeptide Y Autoantibody Levels in Newly Diagnosed Individuals with Type 1 Diabetes. Genes, 2022, 13, 869.	2.4	O
8	Precision diagnostic approach to predict 5-year risk for microvascular complications in type 1 diabetes. EBioMedicine, 2022, 80, 104032 .	6.1	7
9	Reference serum percentile values of adiponectin, leptin, and adiponectin/leptin ratio in healthy Danish children and adolescents. Scandinavian Journal of Clinical and Laboratory Investigation, 2022, 82, 267-276.	1.2	2
10	Children at onset of type 1 diabetes show altered N-glycosylation of plasma proteins and IgG. Diabetologia, 2022, 65, 1315-1327.	6.3	8
11	Differentially Expressed miRNAs in Ulcerative Colitis and Crohn's Disease. Frontiers in Immunology, 2022, 13, .	4.8	15
12	The metabolic syndrome is frequent in children and adolescents with type 1 diabetes compared to healthy controls. Pediatric Diabetes, 2022, 23, 1064-1072.	2.9	1
13	The effect of saffron supplementation on glycemic parameters: An overview of systematic reviews. Phytotherapy Research, 2022, 36, 3444-3458.	5.8	2
14	$\langle i \rangle$ SKAP2 $\langle i \rangle$, a Candidate Gene for Type 1 Diabetes, Regulates \hat{l}^2 -Cell Apoptosis and Glycemic Control in Newly Diagnosed Patients. Diabetes, 2021, 70, 464-476.	0.6	8
15	Changes in the lipidome in type 1 diabetes following low carbohydrate diet: Postâ€hoc analysis of a randomized crossover trial. Endocrinology, Diabetes and Metabolism, 2021, 4, e00213.	2.4	9
16	Human pathways in animal models: possibilities and limitations. Nucleic Acids Research, 2021, 49, 1859-1871.	14.5	35
17	A Dual Systems Genetics Approach Identifies Common Genes, Networks, and Pathways for Type 1 and 2 Diabetes in Human Islets. Frontiers in Genetics, 2021, 12, 630109.	2.3	16
18	Genetic predisposition in the $2\hat{a}\in^2$ - $5\hat{a}\in^2$ A pathway in the development of type 1 diabetes: potential contribution to dysregulation of innate antiviral immunity. Diabetologia, 2021, 64, 1805-1815.	6.3	17

#	Article	IF	CITATIONS
19	Fine-mapping, trans-ancestral and genomic analyses identify causal variants, cells, genes and drug targets for type 1 diabetes. Nature Genetics, 2021, 53, 962-971.	21.4	133
20	Plasma Exosome-Enriched Extracellular Vesicles From Lactating Mothers With Type 1 Diabetes Contain Aberrant Levels of miRNAs During the Postpartum Period. Frontiers in Immunology, 2021, 12, 744509.	4.8	13
21	Cathepsin C Regulates Cytokine-Induced Apoptosis in β-Cell Model Systems. Genes, 2021, 12, 1694.	2.4	5
22	Unaffected bone mineral density in Danish children and adolescents with type 1 diabetes. Journal of Bone and Mineral Metabolism, 2020, 38, 328-337.	2.7	11
23	Bone turnover markers during the remission phase in children and adolescents with type 1 diabetes. Pediatric Diabetes, 2020, 21, 366-376.	2.9	9
24	Systemic TNF \hat{l}_{\pm} correlates with residual \hat{l}_{-}^2 -cell function in children and adolescents newly diagnosed with type 1 diabetes. BMC Pediatrics, 2020, 20, 446.	1.7	4
25	Characterization of plasma lipidomics in adolescent subjects with increased risk for type 1 diabetes in the DiPiS cohort. Metabolomics, 2020, 16 , 109 .	3.0	1
26	Long Noncoding RNAs in Diabetes and β-Cell Regulation. RNA Technologies, 2020, , 523-544.	0.3	2
27	The Rac2 GTPase contributes to cathepsin H-mediated protection against cytokine-induced apoptosis in insulin-secreting cells. Molecular and Cellular Endocrinology, 2020, 518, 110993.	3.2	9
28	P135 MAJOR GENE REGULATORS AFFECTED IN COLON AND BLOOD OF DEXTRAN SODIUM SULFATE ACUTE COLITIS MURINE MODEL. Gastroenterology, 2020, 158, S51.	1.3	0
29	Circulating Inflammatory Markers Are Inversely Associated with Heart Rate Variability Measures in Type 1 Diabetes. Mediators of Inflammation, 2020, 2020, 1-10.	3.0	13
30	Increased levels of inflammatory factors are associated with severity of polyneuropathy in type 1 diabetes. Clinical Endocrinology, 2020, 93, 419-428.	2.4	19
31	Lipidomics of human adipose tissue reveals diversity between body areas. PLoS ONE, 2020, 15, e0228521.	2.5	15
32	Decreased markers of bone turnover in children and adolescents with type 1 diabetes. Pediatric Diabetes, 2020, 21, 505-514.	2.9	21
33	Anti-diabetic potential of plant alkaloids: Revisiting current findings and future perspectives. Pharmacological Research, 2020, 155, 104723.	7.1	72
34	P135 MAJOR GENE REGULATORS AFFECTED IN COLON AND BLOOD OF DEXTRAN SODIUM SULFATE ACUTE COLITIS MURINE MODEL. Inflammatory Bowel Diseases, 2020, 26, S32-S32.	1.9	0
35	Breast Milk-Derived Extracellular Vesicles Enriched in Exosomes From Mothers With Type 1 Diabetes Contain Aberrant Levels of microRNAs. Frontiers in Immunology, 2019, 10, 2543.	4.8	77
36	Perinatal Whole Blood Zinc Status and Cytokines, Adipokines, and Other Immune Response Proteins. Nutrients, 2019, 11, 1980.	4.1	3

3

#	Article	IF	CITATIONS
37	Tu1766 – Dysregulated Lncrnas in Inflammatory Bowel Disease Demonstrate Immune System Related Association Through Guilt-By Association Analysis. Gastroenterology, 2019, 156, S-1116.	1.3	O
38	Association between Neonatal Whole Blood Iron Content and Cytokines, Adipokines, and Other Immune Response Proteins. Nutrients, 2019, 11, 543.	4.1	6
39	Bone turnover markers in children and adolescents with type 1 diabetesâ€"A systematic review. Pediatric Diabetes, 2019, 20, 510-522.	2.9	29
40	miRNA-27a-3p and miRNA-222-3p as Novel Modulators of Phosphodiesterase 3a (PDE3A) in Cerebral Microvascular Endothelial Cells. Molecular Neurobiology, 2019, 56, 5304-5314.	4.0	25
41	Capturing residual beta cell function in type 1 diabetes. Diabetologia, 2019, 62, 28-32.	6.3	9
42	Linking glycemic dysregulation in diabetes to symptoms, comorbidities, and genetics through EHR data mining. ELife, 2019, 8, .	6.0	12
43	Abnormal islet sphingolipid metabolism in type 1 diabetes. Diabetologia, 2018, 61, 1650-1661.	6.3	56
44	â€~25â€Hydroxyvitamin D, Autoantigenic and Total Antibody Concentrations: Results from a Danish Case–control Study of Newly Diagnosed Patients with Childhood Type 1 Diabetes and their Healthy Siblings'. Scandinavian Journal of Immunology, 2018, 87, 46-53.	2.7	5
45	Plasma lipid species at type 1 diabetes onset predict residual beta-cell function after 6 months. Metabolomics, $2018,14,158.$	3.0	11
46	miRNAs regulate development and function of regulatory T-cells in recent onset islet autoimmunity in pre-Type 1 diabetes. Non-coding RNA Investigation, 2018, 2, 16-16.	0.6	4
47	Influence of Disease Duration on Circulating Levels of miRNAs in Children and Adolescents with New Onset Type 1 Diabetes. Non-coding RNA, 2018, 4, 35.	2.6	21
48	The emerging role of lncRNAs in inflammatory bowel disease. Experimental and Molecular Medicine, 2018, 50, 1-14.	7.7	112
49	Cell Type-Selective Expression of Circular RNAs in Human Pancreatic Islets. Non-coding RNA, 2018, 4, 38.	2.6	26
50	MicroRNAs and histone deacetylase inhibition-mediated protection against inflammatory \hat{l}^2 -cell damage. PLoS ONE, 2018, 13, e0203713.	2.5	17
51	Hepatitis B virus upregulates host microRNAs that target apoptosis-regulatory genes in an in vitro cell model. Experimental Cell Research, 2018, 371, 92-103.	2.6	29
52	Hepatitis B virus suppresses the secretion of insulin-like growth factor binding protein 1 to facilitate anti-apoptotic IGF-1 effects in HepG2 cells. Experimental Cell Research, 2018, 370, 399-408.	2.6	8
53	Increased mortality in a Danish cohort of young people with Type 1 diabetes mellitus followed for 24 years. Diabetic Medicine, 2017, 34, 380-386.	2.3	31
54	Survey of 800+ data sets from human tissue and body fluid reveals xenomiRs are likely artifacts. Rna, 2017, 23, 433-445.	3.5	65

#	Article	IF	CITATIONS
55	Pannexin-2-deficiency sensitizes pancreatic \hat{l}^2 -cells to cytokine-induced apoptosis in \hat{A} vitro and impairs glucose tolerance in \hat{A} vivo. Molecular and Cellular Endocrinology, 2017, 448, 108-121.	3.2	10
56	The identification and functional annotation of RNA structures conserved in vertebrates. Genome Research, 2017, 27, 1371-1383.	5.5	71
57	Low perinatal zinc status is not associated with the risk of type 1 diabetes in children. Pediatric Diabetes, 2017, 18, 637-642.	2.9	9
58	Neonatal levels of adiponectin, interleukin-10 and interleukin-12 are associated with the risk of developing type 1 diabetes in childhood and adolescence: A nationwide Danish case-control study. Clinical Immunology, 2017, 174, 18-23.	3.2	13
59	Circulating microRNA levels predict residual beta cell function and glycaemic control in children with type 1 diabetes mellitus. Diabetologia, 2017, 60, 354-363.	6.3	65
60	Levels of soluble TREM-1 in children with newly diagnosed type 1 diabetes and their siblings without type 1 diabetes: a Danish case-control study. Pediatric Diabetes, 2017, 18, 749-754.	2.9	15
61	25-Hydroxyvitamin D and Peripheral Immune Mediators: Results from Two Nationwide Danish Pediatric Cohorts. Nutrients, 2017, 9, 365.	4.1	5
62	Type 1 Diabetes Candidate Genes Linked to Pancreatic Islet Cell Inflammation and Beta-Cell Apoptosis. Genes, 2017, 8, 72.	2.4	71
63	Long non-coding RNAs as novel players in \hat{l}^2 cell function and type 1 diabetes. Human Genomics, 2017, 11, 17.	2.9	48
64	Type 1 diabetes genomeâ€wide association studies: not to be lost in translation. Clinical and Translational Immunology, 2017, 6, e162.	3.8	70
65	High Neonatal Blood Iron Content Is Associated with the Risk of Childhood Type 1 Diabetes Mellitus. Nutrients, 2017, 9, 1221.	4.1	13
66	Genetic Risk Score Modelling for Disease Progression in New-Onset Type 1 Diabetes Patients: Increased Genetic Load of Islet-Expressed and Cytokine-Regulated Candidate Genes Predicts Poorer Glycemic Control. Journal of Diabetes Research, 2016, 2016, 1-8.	2.3	16
67	No Contribution of GAD-65 and IA-2 Autoantibodies around Time of Diagnosis to the Increasing Incidence of Juvenile Type 1 Diabetes: A 9-Year Nationwide Danish Study. International Journal of Endocrinology, 2016, 2016, 1-7.	1.5	6
68	A Systematic Comparison of Purification and Normalization Protocols for Quantitative MicroRNA Expressional Profiling in Insulin-Producing Cells. International Journal of Molecular Sciences, 2016, 17, 896.	4.1	1
69	Potential beneficial effects of a gluten-free diet in newly diagnosed children with type 1 diabetes: a pilot study. SpringerPlus, 2016, 5, 994.	1.2	28
70	MicroRNAs as regulators of betaâ€eell function and dysfunction. Diabetes/Metabolism Research and Reviews, 2016, 32, 334-349.	4.0	62
71	Effects of the genome on immune regulation in type 1 diabetes. Pediatric Diabetes, 2016, 17, 37-42.	2.9	10
72	Metabolomic Biomarkers in the Progression to Type 1 Diabetes. Current Diabetes Reports, 2016, 16, 127.	4.2	11

#	Article	IF	CITATIONS
73	GLP-1 Induces Barrier Protective Expression in Brunner $\hat{E}^{1}/4$ s Glands and Regulates Colonic Inflammation. Inflammatory Bowel Diseases, 2016, 22, 2078-2097.	1.9	62
74	Identification of valid reference genes for microRNA expression studies in a hepatitis B virus replicating liver cell line. BMC Research Notes, 2016, 9, 38.	1.4	13
75	Genetic risk factors for type 1 diabetes. Lancet, The, 2016, 387, 2331-2339.	13.7	389
76	Neonatal vitamin D status is not associated with later risk of type 1 diabetes: results from two large Danish population-based studies. Diabetologia, 2016, 59, 1871-1881.	6.3	43
77	Lipidomic and metabolomic characterization of a genetically modified mouse model of the early stages of human type 1 diabetes pathogenesis. Metabolomics, 2016, 12, 13.	3.0	45
78	A20 Inhibits \hat{l}^2 -Cell Apoptosis by Multiple Mechanisms and Predicts Residual \hat{l}^2 -Cell Function in Type 1 Diabetes. Molecular Endocrinology, 2016, 30, 48-61.	3.7	28
79	Systematic Evaluation of Genes and Genetic Variants Associated with Type 1 Diabetes Susceptibility. Journal of Immunology, 2016, 196, 3043-3053.	0.8	47
80	The genetic and regulatory architecture of ERBB3-type 1 diabetes susceptibility locus. Molecular and Cellular Endocrinology, 2016, 419, 83-91.	3.2	31
81	Alu Elements as Novel Regulators of Gene Expression in Type 1 Diabetes Susceptibility Genes?. Genes, 2015, 6, 577-591.	2.4	9
82	Transcriptomic landscape of lncRNAs in inflammatory bowel disease. Genome Medicine, 2015, 7, 39.	8.2	171
83	Genetic Determinants of Enterovirus Infections: Polymorphisms in Type 1 Diabetes and Innate Immune Genes in the MIDIA Study. Viral Immunology, 2015, 28, 556-563.	1.3	15
84	Residual \hat{l}^2 -Cell Function and the Insulin-Like Growth Factor System in Danish Children and Adolescents With Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 1053-1061.	3.6	21
85	Levels of adiponectin and leptin at onset of type 1 diabetes have changed over time in children and adolescents. Acta Diabetologica, 2015, 52, 167-174.	2.5	16
86	Novel Association Between Immune-Mediated Susceptibility Loci and Persistent Autoantibody Positivity in Type 1 Diabetes. Diabetes, 2015, 64, 3017-3027.	0.6	20
87	Shared Genetic Basis for Type 1 Diabetes, Islet Autoantibodies, and Autoantibodies Associated With Other Immune-Mediated Diseases in Families With Type 1 Diabetes. Diabetes Care, 2015, 38, S8-S13.	8.6	791
88	Genes Affecting Î ² -Cell Function in Type 1 Diabetes. Current Diabetes Reports, 2015, 15, 97.	4.2	40
89	<i>TYK2</i> , a Candidate Gene for Type 1 Diabetes, Modulates Apoptosis and the Innate Immune Response in Human Pancreatic \hat{I}^2 -Cells. Diabetes, 2015, 64, 3808-3817.	0.6	98
90	Polymorphisms in the CTSH gene may influence the progression of diabetic retinopathy: a candidate-gene study in the Danish Cohort of Pediatric Diabetes 1987 (DCPD1987). Graefe's Archive for Clinical and Experimental Ophthalmology, 2015, 253, 1959-1965.	1.9	5

#	Article	IF	Citations
91	Genetic versus Non-Genetic Regulation of miR-103, miR-143 and miR-483-3p Expression in Adipose Tissue and Their Metabolic Implications—A Twin Study. Genes, 2014, 5, 508-517.	2.4	21
92	<i>CTSH</i> regulates \hat{l}^2 -cell function and disease progression in newly diagnosed type 1 diabetes patients. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10305-10310.	7.1	81
93	Circulating MicroRNAs in Plasma of Hepatitis B e Antigen Positive Children Reveal Liver-Specific Target Genes. International Journal of Hepatology, 2014, 2014, 1-10.	1.1	11
94	No association between type 1 diabetes and genetic variation in vitamin D metabolism genes: a Danish study. Pediatric Diabetes, $2014, 15, 416-421$.	2.9	31
95	Systemic Levels of <scp>CCL</scp> 2, <scp>CCL</scp> 3, <scp>CCL</scp> 4 and <scp>CXCL</scp> 8 Differ According to Age, Time Period and Season among Children Newly Diagnosed with type 1 Diabetes and their Healthy Siblings. Scandinavian Journal of Immunology, 2014, 80, 452-461.	2.7	15
96	Temporal profiling of cytokine-induced genes in pancreatic \hat{l}^2 -cells by meta-analysis and network inference. Genomics, 2014, 103, 264-275.	2.9	52
97	Differences in MBL levels between juvenile patients newly diagnosed with type 1 diabetes and their healthy siblings. Molecular Immunology, 2014, 62, 71-76.	2.2	12
98	Bifurcation analysis of an existing mathematical model reveals novel treatment strategies and suggests potential cure for type 1 diabetes. Mathematical Medicine and Biology, 2014, 31, 205-225.	1.2	4
99	Spatially conserved regulatory elements identified within human and mouse Cd247 gene using high-throughput sequencing data from the ENCODE project. Gene, 2014, 545, 80-87.	2.2	6
100	Genetics of diabetes $\hat{a} \in \text{``Are we missing the genes or the disease?.}$ Molecular and Cellular Endocrinology, 2014, 382, 726-739.	3.2	127
101	Effects of GWAS-Associated Genetic Variants on IncRNAs within IBD and T1D Candidate Loci. PLoS ONE, 2014, 9, e105723.	2.5	74
102	Serum amyloid A and C-reactive protein levels may predict microalbuminuria and macroalbuminuria in newly diagnosed type 1 diabetic patients. Journal of Diabetes and Its Complications, 2013, 27, 59-63.	2.3	21
103	Identification of a SIRT1 Mutation in a Family with Type 1 Diabetes. Cell Metabolism, 2013, 17, 448-455.	16.2	103
104	Do post-translational beta cell protein modifications trigger type 1 diabetes?. Diabetologia, 2013, 56, 2347-2354.	6.3	17
105	No Difference in Vitamin D Levels Between Children Newly Diagnosed With Type 1 Diabetes and Their Healthy Siblings: A 13-Year Nationwide Danish Study. Diabetes Care, 2013, 36, e157-e158.	8.6	20
106	Residual β-Cell Function 3–6 Years After Onset of Type 1 Diabetes Reduces Risk of Severe Hypoglycemia in Children and Adolescents. Diabetes Care, 2013, 36, 3454-3459.	8.6	64
107	Complex Multi-Block Analysis Identifies New Immunologic and Genetic Disease Progression Patterns Associated with the Residual \hat{I}^2 -Cell Function 1 Year after Diagnosis of Type 1 Diabetes. PLoS ONE, 2013, 8, e64632.	2.5	19
108	Differential Plasma MicroRNA Profiles in HBeAg Positive and HBeAg Negative Children with Chronic Hepatitis B. PLoS ONE, 2013, 8, e58236.	2.5	45

#	Article	IF	CITATIONS
109	Hepatitis B Surface Antigen Quantity Positively Correlates with Plasma Levels of microRNAs Differentially Expressed in Immunological Phases of Chronic Hepatitis B in Children. PLoS ONE, 2013, 8, e80384.	2.5	16
110	Identification of Novel Type 1 Diabetes Candidate Genes by Integrating Genome-Wide Association Data, Protein-Protein Interactions, and Human Pancreatic Islet Gene Expression. Diabetes, 2012, 61, 954-962.	0.6	105
111	Characterization of Membrane-shed Microvesicles from Cytokine-stimulated \hat{l}^2 -Cells Using Proteomics Strategies. Molecular and Cellular Proteomics, 2012, 11, 230-243.	3.8	105
112	Erratum to "Circulating Levels of MicroRNA from Children with Newly Diagnosed Type 1 Diabetes and Healthy Controls: Evidence That miR-25 Associates to Residual Beta-Cell Function and Glycaemic Control during Disease Progression†Experimental Diabetes Research, 2012, 2012, 1-1.	3.8	34
113	Circulating Levels of MicroRNA from Children with Newly Diagnosed Type 1 Diabetes and Healthy Controls: Evidence That miR-25 Associates to Residual Beta-Cell Function and Glycaemic Control during Disease Progression. Experimental Diabetes Research, 2012, 2012, 1-7.	3.8	196
114	TiSH $\hat{a}\in$ " a robust and sensitive global phosphoproteomics strategy employing a combination of TiO2, SIMAC, and HILIC. Journal of Proteomics, 2012, 75, 5749-5761.	2.4	174
115	Divalent Metal Transporter 1 Regulates Iron-Mediated ROS and Pancreatic \hat{l}^2 Cell Fate in Response to Cytokines. Cell Metabolism, 2012, 16, 449-461.	16.2	133
116	High levels of immunoglobulin E and a continuous increase in immunoglobulin G and immunoglobulin M by age in children with newly diagnosed type 1 diabetes. Human Immunology, 2012, 73, 17-25.	2.4	12
117	Few differences in cytokines between patients newly diagnosed with type 1 diabetes and their healthy siblings. Human Immunology, 2012, 73, 1116-1126.	2.4	18
118	Evidence of Gene-Gene Interaction and Age-at-Diagnosis Effects in Type 1 Diabetes. Diabetes, 2012, 61, 3012-3017.	0.6	60
119	HTR1A a Novel Type 1 Diabetes Susceptibility Gene on Chromosome 5p13-q13. PLoS ONE, 2012, 7, e35439.	2.5	20
120	Relationship between ZnT8Ab, the <i>SLC30A8</i> gene and disease progression in children with newly diagnosed type 1 diabetes. Autoimmunity, 2011, 44, 616-623.	2.6	25
121	Genetics of Diabetic Nephropathy in Diverse Ethnic Groups. Contributions To Nephrology, 2011, 170, 8-18.	1.1	11
122	Hypoglycemia, S-ACE and ACE genotypes in a Danish nationwide population of children and adolescents with type 1 diabetes. Pediatric Diabetes, 2011, 12, 100-106.	2.9	10
123	Independent component and pathway-based analysis of miRNA-regulated gene expression in a model of type 1 diabetes. BMC Genomics, 2011, 12, 97.	2.8	35
124	Correlations between islet autoantibody specificity and the <i>SLC30A8</i> genotype with <i>HLA-DQB1</i> and metabolic control in new onset type 1 diabetes. Autoimmunity, 2011, 44, 107-114.	2.6	28
125	A possible association between a dysfunctional skin barrier (filaggrin null-mutation status) and diabetes: a cross-sectional study. BMJ Open, 2011, 1, e000062-e000062.	1.9	35
126	Danish children born with glutamic acid decarboxylase-65 and islet antigen-2 autoantibodies at birth had an increased risk to develop type 1 diabetes. European Journal of Endocrinology, 2011, 164, 247-252.	3.7	9

#	ARTICLE	IF	Citations
127	Huntingtin-interacting protein 14 is a type 1 diabetes candidate protein regulating insulin secretion and \hat{l}^2 -cell apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E681-8.	7.1	55
128	Tests for Genetic Interactions in Type 1 Diabetes. Diabetes, 2011, 60, 1030-1040.	0.6	43
129	Polymorphisms in the Innate Immune IFIH1 Gene, Frequency of Enterovirus in Monthly Fecal Samples during Infancy, and Islet Autoimmunity. PLoS ONE, 2011, 6, e27781.	2.5	22
130	Systems Biology of the β-Cell – Revisited. , 2011, , 3-23.		0
131	Quantitative iTRAQ-Based Proteomic Identification of Candidate Biomarkers for Diabetic Nephropathy in Plasma of Type 1 Diabetic Patients. Clinical Proteomics, 2010, 6, 105-114.	2.1	28
132	Serum Proteome Pool Changes in Type 2 Diabetic Patients Treated with Anakinra. Clinical Proteomics, 2010, 6, 153-161.	2.1	1
133	Plasma proteome analysis of patients with type 1 diabetes with diabetic nephropathy. Proteome Science, 2010, 8 , 4 .	1.7	36
134	Further evidence that mutations in INScan be a rare cause of Maturity-Onset Diabetes of the Young (MODY). BMC Medical Genetics, 2010, 11, 42.	2.1	67
135	Finding diabetic nephropathy biomarkers in the plasma peptidome by highâ€throughput magnetic bead processing and MALDIâ€TOFâ€MS analysis. Proteomics - Clinical Applications, 2010, 4, 697-705.	1.6	20
136	The Type 1 Diabetes - HLA Susceptibility Interactome - Identification of HLA Genotype-Specific Disease Genes for Type 1 Diabetes. PLoS ONE, 2010, 5, e9576.	2.5	21
137	Genetics of Type 1 Diabetes: What's Next?. Diabetes, 2010, 59, 1561-1571.	0.6	256
138	Screening newborns for candidate biomarkers of type 1 diabetes. Archives of Physiology and Biochemistry, 2010, 116, 227-232.	2.1	7
139	Inhibition of the Nuclear Factor-κB Pathway Prevents Beta Cell Failure and Diet Induced Diabetes in Psammomys obesus. PLoS ONE, 2010, 5, e13341.	2.5	7
140	Genome-Wide Scan for Linkage to Type 1 Diabetes in 2,496 Multiplex Families From the Type 1 Diabetes Genetics Consortium. Diabetes, 2009, 58, 1018-1022.	0.6	87
141	Zinc transporter gene expression is regulated by pro-inflammatory cytokines: a potential role for zinc transporters in beta-cell apoptosis?. BMC Endocrine Disorders, 2009, 9, 7.	2.2	48
142	Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nature Genetics, 2009, 41, 703-707.	21.4	1,513
143	Expression Profiling of Human Genetic and Protein Interaction Networks in Type 1 Diabetes. PLoS ONE, 2009, 4, e6250.	2.5	15
144	Variation within the <i>PPARG </i> gene is associated with residual beta-cell function and glycemic control in children and adolescents during the first year of clinical type 1 diabetes. Pediatric Diabetes, 2008, 9, 297-302.	2.9	8

#	Article	IF	Citations
145	A non-synonymous variant in SLC30A8 is not associated with type 1 diabetes in the Danish population. Molecular Genetics and Metabolism, 2008, 94, 386-388.	1.1	18
146	A Human Type 1 Diabetes Susceptibility Locus Maps to Chromosome 21q22.3. Diabetes, 2008, 57, 2858-2861.	0.6	103
147	Mass spectrometry is only one piece of the puzzle in clinical proteomics. Briefings in Functional Genomics & Proteomics, 2008, 7, 74-83.	3.8	24
148	Posttranslational Protein Modifications in Type 1 Diabetes - Genetic Studies with PCMT1, the Repair Enzyme Protein Isoaspartate Methyltransferase (PIMT) Encoding Gene. Review of Diabetic Studies, 2008, 5, 225-231.	1.3	11
149	PTPN22 R620W Functional Variant in Type 1 Diabetes and Autoimmunity Related Traits. Diabetes, 2007, 56, 522-526.	0.6	57
150	Association analysis in type 1 diabetes of the PRSS16 gene encoding a thymus-specific serine protease. Human Immunology, 2007, 68, 592-598.	2.4	7
151	Integrative analysis for finding genes and networks involved in diabetes and other complex diseases. Genome Biology, 2007, 8, R253.	9.6	52
152	A human phenome-interactome network of protein complexes implicated in genetic disorders. Nature Biotechnology, 2007, 25, 309-316.	17.5	871
153	Type 1 diabetes risk analysis on dried blood spot samples from population-based newborns: design and feasibility of an unselected case–control study. Paediatric and Perinatal Epidemiology, 2007, 21, 507-517.	1.7	34
154	Immune-mediated β-cell destruction in vitro and in vivoâ€"A pivotal role for galectin-3. Biochemical and Biophysical Research Communications, 2006, 344, 406-415.	2.1	41
155	Different islet protein expression profiles during spontaneous diabetes development vs. allograft rejection in BB-DP rats. Autoimmunity, 2006, 39, 315-321.	2.6	2
156	The Type 1 Diabetes Genetics Consortium. Annals of the New York Academy of Sciences, 2006, 1079, 1-8.	3.8	116
157	The relevance of international consortia in studies on the pathogenesis of type 1 diabetes: the role of ET1DGN. Diabetes/Metabolism Research and Reviews, 2006, 22, 238-240.	4.0	1
158	Type 1 and 2 Diabetes. , 2006, , 305-319.		0
159	Endocrine Diseases., 2006,, 28-40.		0
160	OAS1 Splice Site Polymorphism Controlling Antiviral Enzyme Activity Influences Susceptibility to Type 1 Diabetes. Diabetes, 2005, 54, 1588-1591.	0.6	74
161	Type 1 Diabetes. Diabetes, 2005, 54, 2995-3001.	0.6	221
162	Unraveling the Pathogenesis of Type 1 Diabetes with Proteomics: Present And Future Directions. Molecular and Cellular Proteomics, 2005, 4, 441-457.	3.8	47

#	Article	IF	CITATIONS
163	CBLBvariants in type 1 diabetes and their genetic interaction with CTLA4. Journal of Leukocyte Biology, 2005, 77, 579-585.	3.3	39
164	Crohnâ $€$ [™] s disease associated CARD15 (NOD2) variants are not involved in the susceptibility to type 1 diabetes. Molecular Genetics and Metabolism, 2005, 86, 379-383.	1.1	12
165	Variation in Antiviral 2′,5′-Oligoadenylate Synthetase (2′5′AS) Enzyme Activity Is Controlled by a Single-Nucleotide Polymorphism at a Splice-Acceptor Site in the OAS1 Gene. American Journal of Human Genetics, 2005, 76, 623-633.	6.2	143
166	Is Mortalin a Candidate Gene for T1DM ?. Autoimmunity, 2004, 37, 423-430.	2.6	8
167	Novel Analytical Methods Applied to Type 1 Diabetes Genome-Scan Data. American Journal of Human Genetics, 2004, 74, 647-660.	6.2	20
168	Type 1 database mellitus: an inflammatory disease of the islet. Advances in Experimental Medicine and Biology, 2004, 552, 129-53.	1.6	15
169	Mutation Scan of a Type 1 Diabetes Candidate Gene. Annals of the New York Academy of Sciences, 2003, 1005, 332-339.	3.8	5
170	Application of genomics and proteomics in Type 1 diabetes pathogenesis research. Expert Review of Molecular Diagnostics, 2003, 3, 743-757.	3.1	21
171	No evidence of type 1 diabetes susceptibility genes in the region centromeric of the HLA complex. Human Immunology, 2003, 64, 951-959.	2.4	3
172	Association of a functional 17beta-estradiol sensitive IL6-174G/C promoter polymorphism with early-onset type 1 diabetes in females. Human Molecular Genetics, 2003, 12, 1101-1110.	2.9	43
173	Strain Dependent Rat iNOS Promoter Activityâ€"Correlation to Identified WT1 Transcription Factor Binding Site. Autoimmunity, 2003, 36, 167-175.	2.6	11
174	Prophylactic Insulin Treatment of Syngeneically Transplanted Pre-diabetic BB-DP Rats. Autoimmunity, 2003, 36, 99-109.	2.6	4
175	CTLA4 gene and autoimmune endocrinopathies: A new marker?. Journal of Endocrinological Investigation, 2002, 25, 1001-1005.	3.3	5
176	Combined genome and proteome approach to identify new susceptibility genes. American Journal of Medical Genetics Part A, 2002, 115, 55-60.	2.4	16
177	Proteome Analysis—A Novel Approach to Understand the Pathogenesis of Type 1 Diabetes Mellitus. Disease Markers, 2001, 17, 205-216.	1.3	18
178	No evidence for SEL1L as a candidate gene for IDDM11-conferred susceptibility. Diabetes/Metabolism Research and Reviews, 2001, 17, 292-295.	4.0	14
179	Linkage of the Human Inducible Nitric Oxide Synthase Gene to Type 1 Diabetes1. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 2792-2796.	3.6	50
180	The intercellular adhesion molecule-1 K469E polymorphism in type 1 diabetes. Immunogenetics, 2000, 52, $107-111$.	2.4	27

#	Article	IF	CITATIONS
181	Interferon-Î ³ Induces Interleukin-1 Converting Enzyme Expression in Pancreatic Islets by an Interferon Regulatory Factor-1-Dependent Mechanism1. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 830-836.	3.6	49
182	LINKAGE DISEQUILIBRIUM TESTING OF FOUR INTERLEUKIN-1 GENE-CLUSTER POLYMORPHISMS IN DANISH MULTIPLEX FAMILIES WITH INSULIN-DEPENDENT DIABETES MELLITUS. Cytokine, 2000, 12, 171-175.	3.2	18
183	IDDM12 (<i>CTLA4</i>) on 2q33 and <i>IDDM13</i> on 2q34 in Genetic Susceptibility to Type 1 Diabetes (Insulin-dependent). Autoimmunity, 1999, 31, 35-42.	2.6	46
184	No linkage of P187S polymorphism in NAD(P)H: Quinone oxidoreductase (NQO1/DIA4) and type 1 diabetes in the Danish population. , 1999, 14, 67-70.		8
185	The Predisposition to Type 1 Diabetes Linked to the Human Leukocyte Antigen Complex Includes at Least One Non–Class II Gene. American Journal of Human Genetics, 1999, 64, 793-800.	6.2	166
186	The natural history of an HLA haplotype and its recombinants. Immunogenetics, 1998, 48, 8-15.	2.4	10
187	Fine Mapping of the Diabetes-Susceptibility Locus, IDDM4, on Chromosome 11q13. American Journal of Human Genetics, 1998, 63, 547-556.	6.2	56
188	Evidence by allelic association-dependent methods for a type 1 diabetes polygene (IDDM6) on chromosome 18q21. Human Molecular Genetics, 1997, 6, 1003-1010.	2.9	81
189	Analysis of an Interferon- \hat{l}^3 Gene (<i>IFNG</i>) Polymorphism in Danish and Finnish Insulin-Dependent Diabetes Mellitus (IDDM) Patients and Control Subjects. Journal of Interferon and Cytokine Research, 1997, 17, 87-93.	1.2	40
190	Insulin VNTR allele-specific effect in type 1 diabetes depends on identity of untransmitted paternal allele. Nature Genetics, 1997, 17, 350-352.	21.4	183
191	Genetic markers for glutamic acid decarboxylase do not predict insulin-dependent diabetes mellitus in pairs of affected siblings. Human Genetics, 1997, 99, 177-185.	3.8	9
192	IDDM2-VNTR-encoded Susceptibility to Type 1 Diabetes: Dominant Protection and Parental Transmission of Alleles of the Insulin Gene-linked Minisatellite Locus. Journal of Autoimmunity, 1996, 9, 415-421.	6.5	150
193	Linkage of type I diabetes to 15q26 (IDDM3) in the Danish population. Human Genetics, 1996, 98, 491-496.	3.8	28
194	Cytokines and the endocrine system. II. Roles in substrate metabolism, modulation of thyroidal and pancreatic endocrine cell functions and autoimmune endocrine diseases. European Journal of Endocrinology, 1996, 134, 21-30.	3.7	38
195	Reply to "Insulin expression: is VNTR allele 698 really anomalous?― Nature Genetics, 1995, 10, 379-380.	21.4	8
196	Characterization of polymorphisms of an interleukin 1 receptor type 1 gene (IL1RI) promotor region (P2) and their relation to Insulin-Dependent Diabetes Mellitus (IDDM). Cytokine, 1995, 7, 727-733.	3.2	44
197	Genetic Susceptibility Markers in Danish Patients with Type 1 (Insulin-Dependent) Diabetes-Evidence for Polygenecity in Man. Autoimmunity, 1994, 19, 169-178.	2.6	57
198	Association of tumor necrosis factor (TNF) and class II major histocompatibility complex alleles with the secretion of TNF-a and TNF-O by human mononuclear cells: a possible link to insulin-dependent diabetes mellitus. European Journal of Immunology, 1993, 23, 224-231.	2.9	556

#	Article	IF	CITATIONS
199	No independent association between a tumor necrosis factorâ€Î± promotor region polymorphism and insulinâ€dependent diabetes mellitus. European Journal of Immunology, 1993, 23, 3050-3053.	2.9	99
200	Involvement of interleukin 1 and interleukin 1 antagonist in pancreatic \hat{l}^2 -cell destruction in insulin-dependent diabetes mellitus. Cytokine, 1993, 5, 185-191.	3.2	93
201	A Manganese Superoxide Dismutase (SOD2) Gene Polymorphism in Insulin-Dependent Diabetes Mellitus. Disease Markers, 1993, 11, 267-274.	1.3	24