Bronwen Connor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/874806/publications.pdf

Version: 2024-02-01

68 papers 4,442 citations

172457 29 h-index 102487 66 g-index

70 all docs

70 docs citations

70 times ranked

5299 citing authors

#	Article	IF	CITATIONS
1	Small Molecules Enhance Reprogramming of Adult Human Dermal Fibroblasts to Dorsal Forebrain Precursor Cells. Stem Cells and Development, 2022, 31, 78-89.	2.1	5
2	Localisation of clozapine during experimental autoimmune encephalomyelitis and its impact on dopamine and its receptors. Scientific Reports, 2021, 11, 2966.	3.3	8
3	Cell Reprogramming to Model Huntington's Disease: A Comprehensive Review. Cells, 2021, 10, 1565.	4.1	5
4	Directly Reprogrammed Huntington's Disease Neural Precursor Cells Generate Striatal Neurons Exhibiting Aggregates and Impaired Neuronal Maturation. Stem Cells, 2021, 39, 1410-1422.	3.2	10
5	Cell Replacement Therapy for Huntington's Disease. Advances in Experimental Medicine and Biology, 2020, 1266, 57-69.	1.6	2
6	Safety and acceptability of clozapine and risperidone in progressive multiple sclerosis: a phase I, randomised, blinded, placebo-controlled trial. BMJ Neurology Open, 2020, 2, e000060.	1.6	8
7	Clozapine reduces infiltration into the CNS by targeting migration in experimental autoimmune encephalomyelitis. Journal of Neuroinflammation, 2020, 17, 53.	7.2	21
8	Clozapine administration enhanced functional recovery after cuprizone demyelination. PLoS ONE, 2019, 14, e0216113.	2.5	21
9	Receptor for Advanced Glycation End Products (RAGE) is Expressed Predominantly in Medium Spiny Neurons of tgHD Rat Striatum. Neuroscience, 2018, 380, 146-151.	2.3	4
10	Concise Review: The Use of Stem Cells for Understanding and Treating Huntington's Disease. Stem Cells, 2018, 36, 146-160.	3.2	49
11	Conversion of adult human fibroblasts into neural precursor cells using chemically modified mRNA. Heliyon, 2018, 4, e00918.	3.2	27
12	Human Cortical Neuron Generation Using Cell Reprogramming: A Review of Recent Advances. Stem Cells and Development, 2018, 27, 1674-1692.	2.1	14
13	Gait Analysis for Early Detection of Motor Symptoms in the 6-OHDA Rat Model of Parkinson's Disease. Frontiers in Behavioral Neuroscience, 2018, 12, 39.	2.0	34
14	Generation of dopamine neuronal-like cells from induced neural precursors derived from adult human cells by non-viral expression of lineage factors. Journal of Stem Cells and Regenerative Medicine, 2018, 14, 34-44.	2.2	8
15	Understanding Parkinson's Disease through the Use of Cell Reprogramming. Stem Cell Reviews and Reports, 2017, 13, 151-169.	5.6	26
16	Endogenous Brain Repair: Overriding intrinsic lineage determinates through injury-induced micro-environmental signals. Neurogenesis (Austin, Tex), 2017, 4, e1297881.	1.5	4
17	Enhanced disease reduction using clozapine, an atypical antipsychotic agent, and glatiramer acetate combination therapy in experimental autoimmune encephalomyelitis. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2017, 3, 205521731769872.	1.0	20
18	Amelioration of experimental autoimmune encephalomyelitis by clozapine is not associated with defective CD4 T cell responses. Journal of Neuroinflammation, 2017, 14, 68.	7.2	11

#	Article	IF	CITATIONS
19	Rat brain sagittal organotypic slice cultures as an ex vivo dopamine cell loss system. Journal of Neuroscience Methods, 2017, 277, 83-87.	2.5	11
20	Adult neurogenesis and in vivo reprogramming: combining strategies for endogenous brain repair. Neural Regeneration Research, 2016, 11, 1748.	3.0	1
21	l-NIO as a novel mechanism for inducing focal cerebral ischemia in the adult rat brain. Journal of Neuroscience Methods, 2015, 245, 44-57.	2.5	7
22	Treatment with the Antipsychotic Agent, Risperidone, Reduces Disease Severity in Experimental Autoimmune Encephalomyelitis. PLoS ONE, 2014, 9, e104430.	2.5	51
23	Efficacy against subcutaneous or intracranial murine GL261 gliomas in relation to the concentration of the vascular-disrupting agent, 5,6-dimethylxanthenone-4-acetic acid (DMXAA), in the brain and plasma. Cancer Chemotherapy and Pharmacology, 2014, 73, 639-649.	2.3	14
24	Redirection of doublecortin-positive cell migration by over-expression of the chemokines MCP-1, MIP-1 \hat{l} ± and GRO- \hat{l} ± in the adult rat brain. Neuroscience, 2014, 260, 240-248.	2.3	11
25	Concise Review: The Involvement of <i>SOX2</i> in Direct Reprogramming of Induced Neural Stem/Precursor Cells. Stem Cells Translational Medicine, 2013, 2, 579-583.	3.3	44
26	A benzodiazepine impairs the neurogenic and behavioural effects of fluoxetine in a rodent model of chronic stress. Neuropharmacology, 2013, 72, 20-28.	4.1	19
27	Stem cellâ€based therapy for Huntington's disease. Journal of Cellular Biochemistry, 2013, 114, 754-763.	2.6	43
28	IGF-I redirects doublecortin-positive cell migration in the normal adult rat brain. Neuroscience, 2013, 241, 106-115.	2.3	19
29	Allopregnanolone regulates neurogenesis and depressive/anxiety-like behaviour in a social isolation rodent model of chronic stress. Neuropharmacology, 2012, 63, 1315-1326.	4.1	130
30	Secreted amyloid precursor proteins promote proliferation and glial differentiation of adult hippocampal neural progenitor cells. Hippocampus, 2012, 22, 1517-1527.	1.9	48
31	Intrinsic regulation of adult subventricular zone neural progenitor cells and the effect of brain injury. American Journal of Stem Cells, 2012, 1, 48-58.	0.4	2
32	Proneural transcription factors Dlx2 and Pax6 are altered in adult SVZ neural precursor cells following striatal cell loss. Molecular and Cellular Neurosciences, 2011, 47, 53-60.	2.2	15
33	Synaptic integration of newly generated neurons in rat dissociated hippocampal cultures. Molecular and Cellular Neurosciences, 2011, 47, 203-214.	2.2	17
34	Deviating from the well travelled path: Precursor cell migration in the pathological adult mammalian brain. Journal of Cellular Biochemistry, 2011, 112, 1467-1474.	2.6	11
35	Adult Neural Progenitor Cells and Cell Replacement Therapy for Huntington Disease. Pancreatic Islet Biology, 2011, , 299-314.	0.3	1
36	Comparison of Transplant Efficiency between Spontaneously Derived and Noggin-Primed Human Embryonic Stem Cell Neural Precursors in the Quinolinic Acid Rat Model of Huntington's Disease. Cell Transplantation, 2010, 19, 1055-1062.	2.5	38

#	Article	IF	Citations
37	Differential fate and functional outcome of lithium chloride primed adult neural progenitor cell transplants in a rat model of Huntington disease. Stem Cell Research and Therapy, 2010, 1, 41.	5.5	12
38	In vitro priming to direct neuronal fate in adult neural progenitor cells. Experimental Neurology, 2009, 216, 520-524.	4.1	9
39	Chemokines direct neural progenitor cell migration following striatal cell loss. Molecular and Cellular Neurosciences, 2009, 41, 219-232.	2.2	79
40	The cellular composition and morphological organization of the rostral migratory stream in the adult human brain. Journal of Chemical Neuroanatomy, 2009, 37, 196-205.	2.1	89
41	Oxaliplatin-Induced Loss of Phosphorylated Heavy Neurofilament Subunit Neuronal Immunoreactivity in Rat Drg Tissue. Molecular Pain, 2009, 5, 1744-8069-5-66.	2.1	27
42	Doublecortin expression in the normal and epileptic adult human brain. European Journal of Neuroscience, 2008, 28, 2254-2265.	2.6	94
43	AAV-mediated expression of Bcl-xL or XIAP fails to induce neuronal resistance against quinolinic acid-induced striatal lesioning. Neuroscience Letters, 2008, 436, 326-330.	2.1	6
44	Increased progenitor cell proliferation and astrogenesis in the partial progressive 6-hydroxydopamine model of Parkinson's disease. Neuroscience, 2008, 151, 1142-1153.	2.3	85
45	Gene Transfer for Neuroprotection in Animal Models of Parkinson's Disease and Amyotrophic Lateral Sclerosis. Novartis Foundation Symposium, 2008, 231, 70-93.	1.1	16
46	Neural Progenitor Cells Derived from the Adult Rat Subventricular Zone: Characterization and Transplantation. Cell Transplantation, 2007, 16, 799-810.	2.5	26
47	Creating a neurogenic environment: The role of BDNF and FGF2. Molecular and Cellular Neurosciences, 2007, 36, 108-120.	2.2	53
48	Verification of functional AAV-mediated neurotrophic and anti-apoptotic factor expression. Journal of Neuroscience Methods, 2007, 161, 291-300.	2.5	11
49	AAV-mediated delivery of BDNF augments neurogenesis in the normal and quinolinic acid-lesioned adult rat brain. European Journal of Neuroscience, 2007, 25, 3513-3525.	2.6	97
50	Transplanted adult neural progenitor cells survive, differentiate and reduce motor function impairment in a rodent model of Huntington's disease. Experimental Neurology, 2006, 199, 384-396.	4.1	98
51	Oxaliplatin causes selective atrophy of a subpopulation of dorsal root ganglion neurons without inducing cell loss. Cancer Chemotherapy and Pharmacology, 2005, 56, 391-399.	2.3	105
52	The distribution of progenitor cells in the subependymal layer of the lateral ventricle in the normal and Huntington's disease human brain. Neuroscience, 2005, 132, 777-788.	2.3	124
53	Neurogenesis in the Basal Ganglia in Huntington's Disease in the Human Brain and in an Animal Model. , 2005, , 425-433.		0
54	AAV-Mediated gene delivery of BDNF or GDNF is neuroprotective in a model of huntington disease. Molecular Therapy, 2004, 9, 682-688.	8.2	149

#	Article	IF	CITATIONS
55	Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington's disease. Neuroscience, 2004, 127, 319-332.	2.3	186
56	Increased cell proliferation and neurogenesis in the adult human Huntington's disease brain. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9023-9027.	7.1	494
57	Neurogenesis in the Diseased Adult Human Brain: New Therapeutic Strategies for Neurodegenerative Diseases. Cell Cycle, 2003, 2, 427-429.	2.6	23
58	Glial Cell Line-Derived Neurotrophic Factor (GDNF) Gene Delivery Protects Dopaminergic Terminals from Degeneration. Experimental Neurology, 2001, 169, 83-95.	4.1	56
59	Adenoviral Vector-Mediated Delivery Of Glial Cell Line-Derived Neurotrophic Factor Provides Neuroprotection In The Aged Parkinsonian Rat. Clinical and Experimental Pharmacology and Physiology, 2001, 28, 896-900.	1.9	17
60	Delivery of a GDNF Gene into the Substantia Nigra after a Progressive 6-OHDA Lesion Maintains Functional Nigrostriatal Connections. Experimental Neurology, 2000, 166, 1-15.	4.1	99
61	Glial cell lineâ€derived neurotrophic factor (GDNF) as a defensive molecule for neurodegenerative disease: a tribute to the studies of Antonia Vernadakis on neuronal–glial interactions. International Journal of Developmental Neuroscience, 2000, 18, 679-684.	1.6	18
62	Differential effects of glial cell line-derived neurotrophic factor (GDNF) in the striatum and substantia nigra of the aged Parkinsonian rat. Gene Therapy, 1999, 6, 1936-1951.	4.5	122
63	Neuronal death and survival in two models of hypoxic-ischemic brain damage. Brain Research Reviews, 1999, 29, 137-168.	9.0	156
64	The role of neuronal growth factors in neurodegenerative disorders of the human brain. Brain Research Reviews, 1998, 27, 1-39.	9.0	481
65	Co-ordinated and cellular specific induction of the components of the IGF/IGFBP axis in the rat brain following hypoxic–ischemic injury. Molecular Brain Research, 1998, 59, 119-134.	2.3	184
66	Brain-derived neurotrophic factor is reduced in Alzheimer's disease. Molecular Brain Research, 1997, 49, 71-81.	2.3	519
67	Bax expression in mammalian neurons undergoing apoptosis, and in Alzheimer's disease hippocampus. Brain Research, 1997, 750, 223-234.	2.2	145
68	Trk receptor alterations in Alzheimer's disease. Molecular Brain Research, 1996, 42, 1-17.	2.3	101