
Silke Laakmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8747917/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Application of DNA Barcodes for the Identification of Marine Crustaceans from the North Sea and Adjacent Regions. PLoS ONE, 2015, 10, e0139421.	2.5	112
2	A reliable DNA barcode reference library for the identification of the North European shelf fish fauna. Molecular Ecology Resources, 2014, 14, 1060-1071.	4.8	93
3	Metabarcoding of marine environmental DNA based on mitochondrial and nuclear genes. Scientific Reports, 2018, 8, 14822.	3.3	70
4	Identification of <scp>N</scp> orth <scp>S</scp> ea molluscs with <scp>DNA</scp> barcoding. Molecular Ecology Resources, 2016, 16, 288-297.	4.8	68
5	Toward a global reference database of COI barcodes for marine zooplankton. Marine Biology, 2021, 168, 1.	1.5	47
6	High-Throughput Sequencing—The Key to Rapid Biodiversity Assessment of Marine Metazoa?. PLoS ONE, 2015, 10, e0140342.	2.5	45
7	Ecological niches of Arctic deep-sea copepods: Vertical partitioning, dietary preferences and different trophic levels minimize inter-specific competition. Deep-Sea Research Part I: Oceanographic Research Papers, 2009, 56, 741-756.	1.4	36
8	Interactive effects of temperature and salinity on population dynamics of the calanoid copepod Acartia tonsa. Journal of Plankton Research, 2015, 37, 197-210.	1.8	36
9	Morphological and molecular discrimination of two closely related jellyfish species, Cyanea capillata and C. lamarckii (Cnidaria, Scyphozoa), from the northeast Atlantic. Journal of Plankton Research, 2014, 36, 48-63.	1.8	34
10	Emphasizing the diversity of North Sea hydromedusae by combined morphological and molecular methods. Journal of Plankton Research, 2014, 36, 64-76.	1.8	31
11	Unravelling diversity of deep-sea copepods using integrated morphological and molecular techniques. Journal of Plankton Research, 2017, 39, 600-617.	1.8	31
12	Evolution in the deep sea: Biological traits, ecology and phylogenetics of pelagic copepods. Molecular Phylogenetics and Evolution, 2012, 65, 535-546.	2.7	27
13	Longitudinal and vertical trends in stable isotope signatures (δ13C and δ15N) of omnivorous and carnivorous copepods across the South Atlantic Ocean. Marine Biology, 2010, 157, 463-471.	1.5	26
14	Comparative nutritional condition of larval dab Limanda limanda and lesser sandeel Ammodytes marinus in a highly variable environment. Marine Ecology - Progress Series, 2007, 334, 205-212.	1.9	23
15	Vertical distribution and dietary preferences of deep-sea copepods (Euchaetidae and Aetideidae;) Tj ETQq1 1 0.	784314 rg 1.2	BT /Overlock
16	High-resolution community analysis of deep-sea copepods using MALDI-TOF protein fingerprinting. Deep-Sea Research Part I: Oceanographic Research Papers, 2018, 138, 122-130.	1.4	20
17	The crossover from microscopy to genes in marine diversity: from species to assemblages in marine pelagic copepods. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190446.	4.0	19
18	Phylogeographical analysis of <i>Ligia oceanica</i> (Crustacea: Isopoda) reveals two deeply divergent mitochondrial lineages. Biological Journal of the Linnean Society, 2014, 112, 16-30.	1.6	17

SILKE LAAKMANN

#	Article	IF	CITATIONS
19	Species identification of echinoderms from the North Sea by combining morphology and molecular data. Helgoland Marine Research, 2017, 70, .	1.3	17
20	An interim synopsis of the Bradfordian families with a description of Thoxancalanus spinatus (Copepoda: Calanoida), a new diaixid genus and species from the deep Atlantic Ocean. Marine Biodiversity, 2014, 44, 63-88.	1.0	15
21	Molecular Species Delimitation of Icelandic Brittle Stars (Ophiuroidea). Polish Polar Research, 2014, 35, 243-260.	0.9	14
22	Proteomic fingerprinting facilitates biodiversity assessments in understudied ecosystems: A case study on integrated taxonomy of deep sea copepods. Molecular Ecology Resources, 2021, 21, 1936-1951.	4.8	8
23	Morphological and molecular diagnostic species characters of Staurozoa (Cnidaria) collected on the coast of Helgoland (German Bight, North Sea). Marine Biodiversity, 2019, 49, 1775-1797.	1.0	7
24	The phylogeny of Ryocalanoidea (Copepoda, Calanoida) based on morphology and a multi-gene analysis with a description of new ryocalanoidean species. Zoological Journal of the Linnean Society, 2019, 185, 925-957.	2.3	7
25	Do molecular phylogenies unravel the relationships among the evolutionary young "Brafordian― families (Copepoda; Calanoida)?. Molecular Phylogenetics and Evolution, 2019, 130, 330-345.	2.7	6
26	First record of the stalked jellyfish Haliclystus tenuis Kishinouye, 1910 (Cnidaria: Staurozoa) in Atlantic waters. Marine Biodiversity, 2019, 49, 1061-1066.	1.0	6