Patrick H Diamond

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8747673/publications.pdf

Version: 2024-02-01

422 papers 19,790 citations

67 h-index 17090 122 g-index

430 all docs

430 docs citations

times ranked

430

3955 citing authors

#	Article	IF	Citations
1	Ion heat and parallel momentum transport by stochastic magnetic fields and turbulence. Plasma Physics and Controlled Fusion, 2022, 64, 015006.	0.9	2
2	SOL width broadening by spreading of pedestal turbulence. Nuclear Fusion, 2022, 62, 066021.	1.6	8
3	Instability and turbulent relaxation in a stochastic magnetic field. Plasma Physics and Controlled Fusion, 2022, 64, 035016.	0.9	6
4	Electrode biasing maintains the edge shear layer at high density in the J-TEXT tokamak. Nuclear Fusion, 2022, 62, 076014.	1.6	8
5	Zonal shear layer collapse and the power scaling of the density limit: old L-H wine in new bottles. Plasma Physics and Controlled Fusion, 2022, 64, 084004.	0.9	2
6	A unified theory of zonal flow shears and density corrugations in drift wave turbulence. Plasma Physics and Controlled Fusion, 2021, 63, 035015.	0.9	18
7	Anisotropic E × B shearing rate in a magnetic island. Physics of Plasmas, 2021, 28, .	0.7	17
8	Potential vorticity transport in weakly and strongly magnetized plasmas. Physics of Plasmas, 2021, 28, 042301.	0.7	9
9	Bounds on edge shear layer persistence while approaching the density limit. Nuclear Fusion, 2021, 61, 076009.	1.6	11
10	Physics of turbulence spreading and explicit nonlocality. Plasma Physics and Controlled Fusion, 2021, 63, 085017.	0.9	4
11	Let it rip: The mechanics of self-bisection in asexual planarians determines their population reproductive strategies. Physical Biology, 2021, 19, .	0.8	2
12	Enhanced particle transport events approaching the density limit of the J-TEXT tokamak. Nuclear Fusion, 2021, 61, 126066.	1.6	9
13	A reduced model for edge localized mode control by supersonic molecular beam injection and pellet injection. Physics of Plasmas, 2020, 27, 072503.	0.7	2
14	Evidence and modeling of turbulence bifurcation in L-mode confinement transitions on Alcator C-Mod. Physics of Plasmas, 2020, 27, 052303.	0.7	4
15	Turbulence model reduction by deep learning. Physical Review E, 2020, 101, 061201.	0.8	10
16	Potential Vorticity Mixing in a Tangled Magnetic Field. Astrophysical Journal, 2020, 892, 24.	1.6	14
17	When does turbulence spreading matter?. Physics of Plasmas, 2020, 27, .	0.7	5
18	A closer look at turbulence spreading: How bistability admits intermittent, propagating turbulence fronts. Physics of Plasmas, 2020, 27, 032303.	0.7	2

#	Article	IF	Citations
19	Learning how structures form in drift-wave turbulence. Plasma Physics and Controlled Fusion, 2020, 62, 105017.	0.9	3
20	Understanding LOC/SOC phenomenology in tokamaks. Nuclear Fusion, 2020, 60, 105001.	1.6	18
21	Enhancements of residual Reynolds stresses by magnetic perturbations in the edge plasmas of the J-TEXT tokamak. Nuclear Fusion, 2020, 60, 106030.	1.6	5
22	Curvature of Radial Electric Field Aggravates Edge Magnetohydrodynamics Mode in Toroidally Confined Plasmas. Physical Review Letters, 2020, 125, 255003.	2.9	8
23	Studies of Reynolds stress and the turbulent generation of edge poloidal flows on the HL-2A tokamak. Nuclear Fusion, 2019, 59, 106010.	1.6	8
24	Hysteresis as a probe of turbulent bifurcation in intrinsic rotation reversals on Alcator C-Mod. Nuclear Fusion, 2019, 59, 104001.	1.6	7
25	Scale selection and feedback loops for patterns in drift wave-zonal flow turbulence. Plasma Physics and Controlled Fusion, 2019, 61, 105002.	0.9	16
26	Mouth Function Determines the Shape Oscillation Pattern in Regenerating Hydra Tissue Spheres. Biophysical Journal, 2019, 117, 1145-1155.	0.2	12
27	Summary of the fundamental plasma physics session in the first AAPPS-DPP conference. Reviews of Modern Plasma Physics, 2019, 3, 1.	2.2	0
28	Spontaneous transport barriers quench turbulent resistivity in two-dimensional magnetohydrodynamics. Physical Review E, 2019, 99, 041201.	0.8	2
29	Subcritical turbulence spreading and avalanche birth. Physics of Plasmas, 2019, 26, .	0.7	6
30	Nonlinear phase bores in drift wave-zonal flow dynamics. Physics of Plasmas, 2019, 26, 102304.	0.7	2
31	Dynamics of potential vorticity staircase evolution and step mergers in a reduced model of beta-plane turbulence. Physical Review Fluids, 2019, 4, .	1.0	5
32	The ecology of flows and drift wave turbulence in CSDX: A model. Physics of Plasmas, 2018, 25, .	0.7	6
33	Another look at zonal flows: Resonance, shearing, and frictionless saturation. Physics of Plasmas, 2018, 25, 042113.	0.7	9
34	Observation of multi-channel non-local transport in J-TEXT plasmas. Nuclear Fusion, 2018, 58, 044002.	1.6	6
35	CHNS: A case study of turbulence in elastic media. Physics of Plasmas, 2018, 25, .	0.7	5
36	Radial density and heat fluxes description in the velocity space: Nonlinear simulations and quasi-linear calculations. Physics of Plasmas, 2018, 25, 122304.	0.7	4

#	Article	IF	Citations
37	Mesoscopic Transport Events and the Breakdown of Fick's Law for Turbulent Fluxes. Journal of the Korean Physical Society, 2018, 73, 747-792.	0.3	77
38	An interview with Roald Sagdeev: his story of plasma physics in Russia, 1956–1988. European Physical Journal H, 2018, 43, 355-396.	0.5	1
39	Circulation conservation and vortex breakup in magnetohydrodynamics at low magnetic PrandtlÂnumber. Journal of Fluid Mechanics, 2018, 857, 38-60.	1.4	5
40	Tracing the Pathway from Drift-Wave Turbulence with Broken Symmetry to the Production of Sheared Axial Mean Flow. Physical Review Letters, 2018, 120, 205001.	2.9	12
41	Gyrokinetic theory of turbulent acceleration and momentum conservation in tokamak plasmas. Plasma Science and Technology, 2018, 20, 074004.	0.7	4
42	Generation of parasitic axial flow by drift wave turbulence with broken symmetry: Theory and experiment. Physics of Plasmas, 2018, 25, 055710.	0.7	5
43	How shear increments affect the flow production branching ratio in CSDX. Physics of Plasmas, 2018, 25, .	0.7	1
44	Scaling trends of the critical <i>E</i> × <i>B</i> shear for edge harmonic oscillation onset in quiescent H-mode plasmas. Nuclear Fusion, 2018, 58, 112002.	n DIII-D	22
45	Dynamics of zonal shear collapse with hydrodynamic electrons. Physics of Plasmas, 2018, 25, 062306.	0.7	24
46	How electron two-stream instability drives cyclic Langmuir collapse and continuous coherent emission. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1502-1507.	3.3	30
47	A simple model for electron dissipation in trapped ion turbulence. Physics of Plasmas, 2017, 24, .	0.7	7
48	On the emergence of macroscopic transport barriers from staircase structures. Physics of Plasmas, 2017, 24, .	0.7	23
49	Negative viscosity from negative compressibility and axial flow shear stiffness in a straight magnetic field. Physics of Plasmas, 2017, 24, 032117.	0.7	5
50	How turbulence fronts induce plasma spin-up. Physical Review E, 2017, 95, 031203.	0.8	5
51	Mechanics dictate where and how freshwater planarians fission. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10888-10893.	3.3	32
52	Understanding and predicting profile structure and parametric scaling of intrinsic rotation. Physics of Plasmas, 2017, 24, 092501.	0.7	10
53	Modelling enhanced confinement in drift-wave turbulence. Physics of Plasmas, 2017, 24, .	0.7	5
54	Formation and evolution of target patterns in Cahn-Hilliard flows. Physical Review E, 2017, 96, 041101.	0.8	7

#	Article	IF	Citations
55	Bistable dynamics of turbulence spreading in a corrugated temperature profile. Physics of Plasmas, 2017, 24, .	0.7	5
56	Spontaneous profile self-organization in a simple realization of drift-wave turbulence. Physics of Plasmas, 2016, 23, .	0.7	24
57	Dynamics of intrinsic axial flows in unsheared, uniform magnetic fields. Physics of Plasmas, 2016, 23, 052311.	0.7	13
58	Intrinsic rotation drive by collisionless trapped electron mode turbulence. Physics of Plasmas, 2016, 23, 042309.	0.7	5
59	How mesoscopic staircases condense to macroscopic barriers in confined plasma turbulence. Physical Review E, 2016, 94, 051202.	0.8	36
60	Ion-acoustic shocks with self-regulated ion reflection and acceleration. Physics of Plasmas, 2016, 23, .	0.7	18
61	Recent progress towards a physics-based understanding of the H-mode transition. Plasma Physics and Controlled Fusion, 2016, 58, 044003.	0.9	46
62	Synchronization of Geodesic Acoustic Modes and Magnetic Fluctuations in Toroidal Plasmas. Physical Review Letters, 2016, 117, 145002.	2.9	22
63	Zonal Flow Patterns: How Toroidal Coupling Induces Phase Jumps and Shear Layers. Physical Review Letters, 2016, 117, 125002.	2.9	10
64	On the interplay between neoclassical tearing modes and nonlocal transport in toroidal plasmas. Scientific Reports, 2016, 6, 32697.	1.6	15
65	Logarithmic discretization and systematic derivation of shell models in two-dimensional turbulence. Physical Review E, 2016, 94, 033106.	0.8	5
66	Transport matrix for particles and momentum in collisional drift waves turbulence in linear plasma devices. Physics of Plasmas, 2016, 23, 022309.	0.7	10
67	Cascades and spectra of a turbulent spinodal decomposition in two-dimensional symmetric binary liquid mixtures. Physical Review Fluids, $2016,1,$	1.0	10
68	Nonperturbative mean-field theory for minimum enstrophy relaxation. Physical Review E, 2015, 91, 053024.	0.8	2
69	Small scale coherent vortex generation in drift wave-zonal flow turbulence. Physics of Plasmas, 2015, 22, 122304.	0.7	6
70	Direct identification of predator-prey dynamics in gyrokinetic simulations. Physics of Plasmas, 2015, 22,	0.7	25
71	Intrinsic torque reversals induced by magnetic shear effects on the turbulence spectrum in tokamak	0.7	18
72	Finding the Elusive <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>>mml:mi><mml:mo>×</mml:mo></mml:mi>>mml:m</mml:math>	2.9	98

#	Article	lF	Citations
73	Flux-driven simulations of turbulence collapse. Physics of Plasmas, 2015, 22, 032505.	0.7	29
74	Nonlinear parallel momentum transport in strong electrostatic turbulence. Physics of Plasmas, 2015, 22, 052302.	0.7	8
75	On calculating the potential vorticity flux. Physics of Plasmas, 2015, 22, .	0.7	3
76	Up-gradient particle flux in a drift wave-zonal flow system. Physics of Plasmas, 2015, 22, .	0.7	18
77	Zonal flows and pattern formation. Journal of Physics A: Mathematical and Theoretical, 2015, 48, 293001.	0.7	47
78	Zonal flow formation in the presence of ambient mean shear. Physics of Plasmas, 2015, 22, .	0.7	4
79	From Phase Locking to Phase Slips: A Mechanism for a Quiescent <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mi>H</mml:mi></mml:mrow></mml:mrow></mml:math> mode. Physical Review Letters. 2015. 114. 145002.	2.9	39
80	Linking the micro and macro: L-H transition dynamics and threshold physics. Physics of Plasmas, 2015, 22, 032506.	0.7	23
81	Coherent structures in ion temperature gradient turbulence-zonal flow. Physics of Plasmas, 2014, 21, 102306.	0.7	16
82		0.7	19
83	lon temperature gradient driven turbulence with strong trapped ion resonance. Physics of Plasmas, 2014, 21, 102303.	0.7	13
84	The impact of pedestal turbulence and electron inertia on edge-localized-mode crashes. Physics of Plasmas, 2014, 21, .	0.7	19
85	Phase-space jets drive transport and anomalous resistivity. Physics of Plasmas, 2014, 21, .	0.7	9
86	Momentum transport in the vicinity of $\langle i \rangle q \langle sub \rangle min \langle sub \rangle \langle i \rangle$ in reverse shear tokamaks due to ion temperature gradient turbulence. Physics of Plasmas, 2014, 21, 012302.	0.7	6
87	Anomalous viscosity of the quark-gluon plasma. Physical Review C, 2014, 89, .	1.1	2
88	A semi-analytic power balance model for low (L) to high (H) mode transition power threshold. Physics of Plasmas, 2014, 21, .	0.7	3
89	Effects of q-profile structure on turbulence spreading: A fluctuation intensity transport analysis. Physics of Plasmas, 2014, 21, .	0.7	9
90	Turbulence elasticityâ€"A new mechanism for transport barrier dynamics. Physics of Plasmas, 2014, 21, 090702.	0.7	2

#	Article	IF	CITATIONS
91	Nonlinear current-driven ion-acoustic instability driven by phase-space structures. Plasma Physics and Controlled Fusion, 2014, 56, 075005.	0.9	35
92	Zonal flow production in the L–H transition in Alcator C-Mod. Plasma Physics and Controlled Fusion, 2014, 56, 075013.	0.9	49
93	Elasticity in drift-wave–zonal-flow turbulence. Physical Review E, 2014, 89, 041101.	0.8	8
94	Relative Dispersion of Trapped Ion Granulations in Sheared Flows. Plasma and Fusion Research, 2014, 9, 3403018-3403018.	0.3	5
95	Conversion of poloidal flows into toroidal flows by phase space structures in trapped ion resonance driven turbulence. Plasma Physics and Controlled Fusion, 2013, 55, 125001.	0.9	11
96	Dynamics of tilted eddies in a transversal flow at the edge of tokamak plasmas and the consequences for L–H transition. Plasma Physics and Controlled Fusion, 2013, 55, 124024.	0.9	12
97	Transport of radial heat flux and second sound in fusion plasmas. Physics of Plasmas, 2013, 20, .	0.7	14
98	Gyrokinetic Theory of Turbulent Acceleration of Parallel Rotation in Tokamak Plasmas. Physical Review Letters, 2013, 110, 265006.	2.9	45
99	Experimental Evidence for the Intimate Interaction among Sheared Flows, Eddy Structures, Reynolds Stress, and Zonal Flows across a Transition to Improved Confinement. Physical Review Letters, 2013, 111, .	2.9	53
100	Nonlinear instabilities driven by coherent phase-space structures. Physical Review E, 2013, 87, .	0.8	28
101	How the Propagation of Heat-Flux Modulations Triggers <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>E</mml:mi><mml:mi><mml:mo><mml:mi>B</mml:mi></mml:mo></mml:mi></mml:math> Flow Pattern Formation. Physical Review Letters, 2013, 110, 105002.	2.9	30
102	Physics of Stimulated <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>L</mml:mi> <mml:mi> <mml:mi> <mml:mi> H</mml:mi> </mml:mi> <mml:mi> Transitions. Physical Review Letters, 2013, 110, 195002.</mml:mi></mml:mi></mml:math>	2.9	32
103	Gyro-fluid and two-fluid theory and simulations of edge-localized-modes. Physics of Plasmas, 2013, 20,	0.7	42
104	Fluctuating zonal flows in the I-mode regime in Alcator C-Mod. Physics of Plasmas, 2013, 20, .	0.7	79
105	Turbulent electron transport in edge pedestal by electron temperature gradient turbulence. Physics of Plasmas, 2013, 20, .	0.7	7
106	Spatio-temporal evolution of the H → L back transition. Physics of Plasmas, 2013, 20, .	0.7	18
107	ANALYTIC SOLUTION FOR SELF-REGULATED COLLECTIVE ESCAPE OF COSMIC RAYS FROM THEIR ACCELERATION SITES. Astrophysical Journal, 2013, 768, 73.	1.6	102
108	Dynamics of stimulated L → H transitions. Physics of Plasmas, 2013, 20, .	0.7	16

#	Article	IF	Citations
109	Effects of Magnetic Shear on Toroidal Rotation in Tokamak Plasmas with Lower Hybrid Current Drive. Physical Review Letters, 2013, 111, 125003.	2.9	26
110	Blob-Hole Structures as Non-Axisymmetric Equilibrium Solutions for Potential Vorticity Conserving Fluids. Plasma and Fusion Research, 2013, 8, 2403080-2403080.	0.3	1
111	Role of external torque in the formation of ion thermal internal transport barriers. Physics of Plasmas, 2012, 19, .	0.7	9
112	Drift hole structure and dynamics with turbulence driven flows. Physics of Plasmas, 2012, 19, 072307.	0.7	16
113	Role of Reynolds stress and toroidal momentum transport in the dynamics of internal transport barriers. Physics of Plasmas, 2012, 19, .	0.7	3
114	Impact of resonant magnetic perturbations on nonlinearly driven modes in drift-wave turbulence. Physics of Plasmas, 2012, 19, 055903.	0.7	25
115	Collisionless inter-species energy transfer and turbulent heating in drift wave turbulence. Physics of Plasmas, 2012, 19, .	0.7	11
116	A statistical analysis of avalanching heat transport in stationary enhanced core confinement regimes. Physics of Plasmas, 2012, 19, .	0.7	15
117	Effect of secondary convective cells on turbulence intensity profiles, flow generation, and transport. Physics of Plasmas, 2012, 19, 112506.	0.7	3
118	First observation of a new zonal-flow cycle state in the H-mode transport barrier of the experimental advanced superconducting Tokamak. Physics of Plasmas, 2012, 19, 122502.	0.7	14
119	Zonal flow triggers the L-H transition in the Experimental Advanced Superconducting Tokamak. Physics of Plasmas, 2012, 19, 072311.	0.7	83
120	On the mechanism for edge localized mode mitigation by supersonic molecular beam injection. Physics of Plasmas, 2012, 19, 022505.	0.7	36
121	Symmetry breaking effects of density gradient on parallel momentum transport: A new Ïs* effect. Physics of Plasmas, 2012, 19, .	0.7	3
122	Spatial, temporal and spectral structure of the turbulenceâ€"flow interaction at the Lâ€"H transition. Plasma Physics and Controlled Fusion, 2012, 54, 124024.	0.9	18
123	Spatio-temporal evolution of the L → l → H transition. Physics of Plasmas, 2012, 19, .	0.7	117
124	Proton-Helium Spectral Anomaly as a Signature of Cosmic Ray Accelerator. Physical Review Letters, 2012, 108, 081104.	2.9	63
125	How does drift wave turbulence convert parallel compression into perpendicular flows?. Plasma Physics and Controlled Fusion, 2012, 54, 095015.	0.9	14
126	Ohmic energy confinement saturation and core toroidal rotation reversal in Alcator C-Mod plasmas. Physics of Plasmas, 2012, 19, .	0.7	56

#	Article	IF	CITATIONS
127	MAGNETIC RECONNECTION, HELICITY DYNAMICS, AND HYPER-DIFFUSION. Astrophysical Journal, 2012, 757, 173.	1.6	18
128	On the mechanism for breaks in the cosmic ray spectrum. Physics of Plasmas, 2012, 19, .	0.7	14
129	Angular distribution of energetic particles scattered by strongly anisotropic MHD turbulence: Understanding Milagro/IceCube results. , 2012, , .		1
130	Interaction between external and intrinsic torque and its impact on internal transport barrier formation: A gyrofluid simulation study. Journal of the Korean Physical Society, 2012, 61, 55-61.	0.3	7
131	Frequency-Resolved Nonlinear Turbulent Energy Transfer into Zonal Flows in Strongly Heated <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>L</mml:mi></mml:math> -Mode Plasmas in the HL-2A Tokamak. Physical Review Letters. 2012. 108. 245001.	2.9	82
132	MAGNETIC AND DENSITY SPIKES IN COSMIC-RAY SHOCK PRECURSORS. Astrophysical Journal Letters, 2012, 748, L32.	3.0	11
133	Mechanism for spectral break in cosmic ray proton spectrum of supernova remnant W44. Nature Communications, 2011, 2, 194.	5.8	81
134	Vorticity dynamics, drift wave turbulence, and zonal flows: a look back and a look ahead. Plasma Physics and Controlled Fusion, 2011, 53, 124001.	0.9	66
135	Neoclassical physics in full distribution function gyrokinetics. Physics of Plasmas, 2011, 18, .	0.7	35
136	Non-Gaussian properties of global momentum and particle fluxes in a cylindrical laboratory plasma. Physics of Plasmas, 2011, 18, 070701.	0.7	18
137	Spatiotemporal Structure of the Interaction between Turbulence and Flows at the L-H Transition in a Toroidal Plasma. Physical Review Letters, 2011, 107, 245004.	2.9	104
138	First Evidence of the Role of Zonal Flows for the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>L</mml:mi><mml:mi></mml:mi>Transition at Marginal Input Power in the EAST Tokamak. Physical Review Letters, 2011, 107, 125001.</mml:math>	2.9	152
139	Rotation Reversal Bifurcation and Energy Confinement Saturation in Tokamak Ohmic <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>L</mml:mi></mml:math> -Mode Plasmas. Physical Review Letters, 2011, 107, 265001.	2.9	81
140	Generation of a Sheared Plasma Rotation by Emission, Propagation, and Absorption of Drift Wave Packets. Physical Review Letters, 2011, 107, 055003.	2.9	38
141	Edge Temperature Gradient as Intrinsic Rotation Drive in Alcator <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>C</mml:mi></mml:math> -Mod Tokamak Plasmas. Physical Review Letters, 2011, 106, 215001.	2.9	83
142	Trapped Electron Mode Turbulence Driven Intrinsic Rotation in Tokamak Plasmas. Physical Review Letters, 2011, 106, 085001.	2.9	33
143	On relaxation and transport in gyrokinetic drift wave turbulence with zonal flow. Physics of Plasmas, 2011, 18, .	0.7	18
144	Effect of resonant magnetic perturbations on secondary structures in drift-wave turbulence. Physics of Plasmas, 2011, 18, 082309.	0.7	13

#	Article	IF	CITATIONS
145	Characteristics of turbulence-driven plasma flow and origin of experimental empirical scalings of intrinsic rotation. Physics of Plasmas, 2011, 18, 042502.	0.7	11
146	Turbulence intensity pulse propagation with self-consistent nonlinear noise. Physics of Plasmas, 2011, 18, .	0.7	2
147	PROBING NEARBY COSMIC-RAY ACCELERATORS AND INTERSTELLAR MEDIUM TURBULENCE WITH MILAGRO HOT SPOTS. Astrophysical Journal, 2010, 721, 750-761.	1.6	48
148	Collisionless Dynamical Friction and Relaxation in a Simple Drift Wave-Zonal Flow Turbulence. Plasma and Fusion Research, 2010, 5, S2051-S2051.	0.3	6
149	Shell models and the possibility of application to fusion plasmas. Plasma Physics and Controlled Fusion, 2010, 52, 045002.	0.9	14
150	Poloidal rotation and its relation to the potential vorticity flux. Physics of Plasmas, 2010, 17, .	0.7	24
151	Intrinsic Rotation from a Residual Stress at the Boundary of a Cylindrical Laboratory Plasma. Physical Review Letters, 2010, 104, 065002.	2.9	36
152	On the efficiency of intrinsic rotation generation in tokamaks. Physics of Plasmas, 2010, 17, 102313.	0.7	44
153	Role of the geodesic acoustic mode shearing feedback loop in transport bifurcations and turbulence spreading. Physics of Plasmas, 2010, 17, 032309.	0.7	27
154	Nonlinear flow generation by electrostatic turbulence in tokamaks. Physics of Plasmas, 2010, 17, 072511.	0.7	81
155	A simple model of intrinsic rotation in high confinement regime tokamak plasmas. Physics of Plasmas, 2010, 17, 032509.	0.7	19
156	Mechanisms for generating toroidal rotation in tokamaks without external momentum input. Physics of Plasmas, 2010, 17 , .	0.7	74
157	lon-temperature gradient modes affected by helical magnetic field of magnetic islands. Physics of Plasmas, 2010, 17, 074503.	0.7	9
158	On the structure and scale of cosmic ray modified shocks. Plasma Physics and Controlled Fusion, 2010, 52, 124006.	0.9	12
159	On the validity of the local diffusive paradigm in turbulent plasma transport. Physical Review E, 2010, 82, 025401.	0.8	155
160	Residual parallel Reynolds stress due to turbulence intensity gradient in tokamak plasmas. Physics of Plasmas, 2010, 17 , .	0.7	91
161	NONLINEAR DYNAMICS OF ACOUSTIC INSTABILITY IN A COSMIC RAY SHOCK PRECURSOR AND ITS IMPACT ON PARTICLE ACCELERATION. Astrophysical Journal, 2009, 692, 1571-1581.	1.6	22
162	Compressed ion temperature gradient turbulence in diverted tokamak edge. Physics of Plasmas, 2009, $16, .$	0.7	80

#	Article	IF	CITATIONS
163	Gyrokinetic Studies on Turbulence-Driven and Neoclassical Nondiffusive Toroidal-Momentum Transport and the Effect of Residual Fluctuations in Strong <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>E</mml:mi>Shear.</mml:math>	2.9	48
164	Observation of the parametric-modulational instability between the drift-wave fluctuation and azimuthally symmetric sheared radial electric field oscillation in a cylindrical laboratory plasma. Physics of Plasmas, 2009, 16, 020706.	0.7	58
165	Wave-Number Spectrum of Drift-Wave Turbulence. Physical Review Letters, 2009, 102, 255002.	2.9	41
166	Transport of parallel momentum by drift-Alfvén turbulence. Physics of Plasmas, 2009, 16, .	0.7	18
167	Toroidal Rotation Driven by the Polarization Drift. Physical Review Letters, 2009, 103, 205003.	2.9	41
168	Response to "Comment on â€Turbulent equipartition theory of toroidal momentum pinch' ―[Phys. Plasmas 16, 034703 (2009)]. Physics of Plasmas, 2009, 16, 034704.	0.7	3
169	Full-f gyrokinetic particle simulation of centrally heated global ITG turbulence from magnetic axis to edge pedestal top in a realistic tokamak geometry. Nuclear Fusion, 2009, 49, 115021.	1.6	139
170	Nonlinear dynamics of shear flows and plasma rotation in a simple laboratory plasma system. Plasma Physics and Controlled Fusion, 2009, 51, 124055.	0.9	9
171	A novel mechanism for exciting intrinsic toroidal rotation. Physics of Plasmas, 2009, 16, 052302.	0.7	40
172	Weak hysteresis in a simplified model of the L-H transition. Physics of Plasmas, 2009, 16, 012504.	0.7	28
173	Wave Dynamics and Particle Acceleration in Shock Precursors. , 2009, , .		1
174	A Tutorial on Basic Concepts in MHD Turbulence and Turbulent Transport. , 2009, , 119-150.		1
175	Turbulent resistivity in wavy two-dimensional magnetohydrodynamic turbulence. Journal of Fluid Mechanics, 2008, 595, 173-202.	1.4	6
176	Momentum theorems and the structure of atmospheric jets and zonal flows in plasmas. Plasma Physics and Controlled Fusion, 2008, 50, 124018.	0.9	47
177	Coexistence of Zonal Flows and Drift-Waves in a Cylindrical Magnetized Plasma. Journal of the Physical Society of Japan, 2008, 77, 114501.	0.7	18
178	Transport of parallel momentum by collisionless drift wave turbulence. AIP Conference Proceedings, 2008, , .	0.3	O
179	Transport of parallel momentum by collisionless drift wave turbulence. Physics of Plasmas, 2008, 15, .	0.7	126
180	Analytic theory of Lâ \dagger 'H transition, barrier structure, and hysteresis for a simple model of coupled particle and heat fluxes. Physics of Plasmas, 2008, 15, .	0.7	48

#	Article	IF	CITATIONS
181	Experimental studies of zonal flow and field in compact helical system plasma. Physics of Plasmas, $2008,15,.$	0.7	20
182	Turbulent equipartition theory of toroidal momentum pinch. Physics of Plasmas, 2008, 15, 055902.	0.7	44
183	Turbulent Equipartition and Homogenization of Plasma Angular Momentum. Physical Review Letters, 2008, 100, 135001.	2.9	53
184	On Cross-Phase and the Quenching of the Turbulent Diffusion of Magnetic Fields in Two Dimensions. Astrophysical Journal, 2008, 678, L137-L140.	1.6	9
185	Front propagation and critical gradient transport models. Physics of Plasmas, 2007, 14, .	0.7	68
186	Experimental progress on zonal flow physics in toroidal plasmas. Nuclear Fusion, 2007, 47, S718-S726.	1.6	109
187	Turbulent Diffusion of Magnetic Fields in Two-Dimensional Magnetohydrodynamic Turbulence with Stable Stratification. Physical Review Letters, 2007, 99, 224502.	2.9	3
188	Experimental Evidence of a Zonal Magnetic Field in a Toroidal Plasma. Physical Review Letters, 2007, 98, 165001.	2.9	45
189	Low-q resonances, transport barriers, and secondary electrostatic convective cells. Physics of Plasmas, 2007, 14, 112306.	0.7	9
190	The possible magnetic torus in stellar interior. Plasma Physics and Controlled Fusion, 2007, 49, 809-824.	0.9	0
191	Î ² -Plane MHD turbulence and dissipation in the solar tachocline. , 2007, , 213-240.		11
192	Dynamics of Mesoscale Magnetic Field in Diffusive Shock Acceleration. Astrophysical Journal, 2007, 654, 252-266.	1.6	35
193	Mean Field Magnetohydrodynamics of Accretion Disks. Astrophysical Journal, 2007, 665, 535-553.	1.6	68
194	Î ² -Plane Magnetohydrodynamic Turbulence in the Solar Tachocline. Astrophysical Journal, 2007, 667, L113-L116.	1.6	79
195	Physics of internal transport barrier of toroidal helical plasmas. Physics of Plasmas, 2007, 14, 020702.	0.7	30
196	Intermittent characteristics in coupling between turbulence and zonal flows. Plasma Physics and Controlled Fusion, 2007, 49, 211-217.	0.9	37
197	Spatial and spectral evolution of turbulence. Physics of Plasmas, 2007, 14, 055902.	0.7	16
198	Intrinsic rotation and electric field shear. Physics of Plasmas, 2007, 14, 042306.	0.7	195

#	Article	IF	Citations
199	Nonlinear gyrokinetic theory of toroidal momentum pinch. Physics of Plasmas, 2007, 14, .	0.7	165
200	Simulation of Fusion Plasmas: Current Status and Future Direction. Plasma Science and Technology, 2007, 9, 312-387.	0.7	29
201	Causal Relationship between Zonal Flow and Turbulence in a Toroidal Plasma. Journal of the Physical Society of Japan, 2007, 76, 033501.	0.7	31
202	Wave-Particle Decorrelation and Transport of Anisotropic Turbulence in Collisionless Plasmas. Physical Review Letters, 2007, 99, 265003.	2.9	61
203	Nonlinear Drive of Tearing Mode by Microscopic Plasma Turbulence. Plasma and Fusion Research, 2007, 2, 025-025.	0.3	20
204	On Imaging of Plasma Turbulence. Plasma and Fusion Research, 2007, 2, S1003-S1003.	0.3	0
205	Physics of zonal flows. Physics of Plasmas, 2006, 13, 055502.	0.7	172
206	Nonlinear Shock Acceleration beyond the Bohm Limit. Astrophysical Journal, 2006, 642, 244-259.	1.6	30
207	Turbulence and transport characteristics of a barrier in a toroidal plasma. Plasma Physics and Controlled Fusion, 2006, 48, S205-S212.	0.9	32
208	Spectrograph of electric field fluctuation in toroidal helical plasma. Plasma Physics and Controlled Fusion, 2006, 48, S31-S39.	0.9	28
209	Properties of turbulence and stationary zonal flow on transport barrier in CHS. Plasma Physics and Controlled Fusion, 2006, 48, A365-A370.	0.9	23
210	Turbulence spreading in reversed shear plasmas. Plasma Physics and Controlled Fusion, 2006, 48, A409-A418.	0.9	31
211	Possible Global Magneto-Fluid Structure of the Stellar Convection Zone. Publication of the Astronomical Society of Japan, 2006, 58, 605-616.	1.0	3
212	Radial transport of fluctuation energy in a two-field model of drift-wave turbulence. Physics of Plasmas, 2006, 13, 052306.	0.7	37
213	Multiscale interaction of a tearing mode with drift wave turbulence: A minimal self-consistent model. Physics of Plasmas, 2006, 13, 032302.	0.7	62
214	Nonlinear Triad Interactions and the Mechanism of Spreading in Drift-Wave Turbulence. Physical Review Letters, 2006, 97, 024502.	2.9	22
215	Geodesic Acoustic Eigenmodes. Plasma and Fusion Research, 2006, 1, 037-037.	0.3	56
216	Effect of Turbulence Spreading on Subcritical Turbulence in Inhomogeneous Plasmas. Journal of the Physical Society of Japan, 2005, 74, 2001-2006.	0.7	5

#	Article	IF	Citations
217	On the Gamma-Ray Spectra Radiated by Protons Accelerated in Supernova Remnant Shocks near Molecular Clouds: The case of Supernova Remnant RX J1713.7-3946. Astrophysical Journal, 2005, 624, L37-L40.	1.6	34
218	On the dynamics of edge-core coupling. Physics of Plasmas, 2005, 12, 090903.	0.7	44
219	On the bicoherence analysis of plasma turbulence. Physics of Plasmas, 2005, 12, 102301.	0.7	49
220	Coherent structure of zonal flow and onset of turbulent transport. Physics of Plasmas, 2005, 12, 062303.	0.7	47
221	Dynamics of turbulence spreading in magnetically confined plasmas. Physics of Plasmas, 2005, 12, 032303.	0.7	107
222	Zonal flows in plasma—a review. Plasma Physics and Controlled Fusion, 2005, 47, R35-R161.	0.9	1,682
223	Turbulence spreading into the linearly stable zone and transport scaling. Plasma Physics and Controlled Fusion, 2004, 46, A323-A333.	0.9	185
224	Collisional effects on coherent structures of zonal flows and turbulent transport. Plasma Physics and Controlled Fusion, 2004, 46, A335-A340.	0.9	8
225	Streamer formation and collapse in electron temperature gradient driven turbulence. Physics of Plasmas, 2004, 11, 572-583.	0.7	15
226	Random shearing by zonal flows and transport reduction. Physics of Plasmas, 2004, 11, L77-L80.	0.7	21
227	Nonlinear elongation of two-dimensional structures in electron temperature gradient driven turbulence. Physics of Plasmas, 2004, 11, 4973-4982.	0.7	16
228	A simple model of interactions between electron temperature gradient and drift-wave turbulence. Physics of Plasmas, 2004, 11, 1043-1051.	0.7	37
229	Radially sheared azimuthal flows and turbulent transport in a cylindrical plasma. Physics of Plasmas, 2004, 11, 5195-5203.	0.7	52
230	Transport reduction by shear flows in dynamical models. Physics of Plasmas, 2004, 11, 4554-4558.	0.7	27
231	Hamiltonian structure of the fluid electron temperature gradient driven mode. Physics of Plasmas, 2004, 11, 332-333.	0.7	6
232	Radially sheared azimuthal flows and turbulent transport in a cylindrical helicon plasma device. Plasma Physics and Controlled Fusion, 2004, 46, A373-A379.	0.9	14
233	Response to "Comment on â€~Dynamics of zonal flow saturation in strong collisionless drift wave turbulence' ―[Phys. Plasmas 11, 1744 (2004)]. Physics of Plasmas, 2004, 11, 1747-1748.	0.7	0
234	Identification of Zonal Flows in a Toroidal Plasma. Physical Review Letters, 2004, 93, 165002.	2.9	331

#	Article	IF	CITATIONS
235	Magnetohydrodynamics., 2004, , 705-732.		O
236	Zonal Flows and Transient Dynamics of the Lâ°' HTransition. Physical Review Letters, 2003, 90, 185006.	2.9	269
237	Mean shear flows, zonal flows, and generalized Kelvin–Helmholtz modes in drift wave turbulence: A minimal model for L→H transition. Physics of Plasmas, 2003, 10, 1698-1704.	0.7	67
238	Dynamics of helicity transport and Taylor relaxation. Physics of Plasmas, 2003, 10, 2322-2329.	0.7	26
239	Effect of Mean Flow Shear on Cross Phase and Transport Reconsidered. Physical Review Letters, 2003, 91, 075001.	2.9	30
240	Hysteresis and relaxation in bistable diffusive sandpile. Physics of Plasmas, 2003, 10, 569-572.	0.7	18
241	Collisional Damping of ETG-Mode-Driven Zonal Flows. Physical Review Letters, 2003, 91, 075003.	2.9	30
242	Non-perturbative models of intermittency in drift-wave turbulence: towards a probabilistic theory of anomalous transport. Nuclear Fusion, 2003, 43, 961-968.	1.6	37
243	Investigations of the role of nonlinear couplings in structure formation and transport regulation: experiment, simulation, and theory. Nuclear Fusion, 2003, 43, 761-780.	1.6	34
244	Modulational instability of drift waves. New Journal of Physics, 2003, 5, 29-29.	1.2	17
245	Sandpiles with Bistable Automata Rules: Towards a Minimal Model of Pedestal Formation and Structure. Physical Review Letters, 2002, 89, 255001.	2.9	29
246	Intermittency in Drift-Wave Turbulence: Structure of the Momentum Flux Probability Distribution Function. Physical Review Letters, 2002, 88, 225002.	2.9	30
247	Electromagnetic secondary instabilities in electron temperature gradient turbulence. Physics of Plasmas, 2002, 9, 3857-3866.	0.7	38
248	Dynamics of zonal flow saturation in strong collisionless drift wave turbulence. Physics of Plasmas, 2002, 9, 4530-4539.	0.7	64
249	Theory of the momentum flux probability distribution function for drift wave turbulence. Physics of Plasmas, 2002, 9, 71-77.	0.7	19
250	Evidence for Reynolds-stress driven shear flows using bispectral analysis: theory and experiment. Plasma Physics and Controlled Fusion, 2002, 44, A453-A457.	0.9	28
251	Coherent nonlinear structures of drift wave turbulence modulated by zonal flows. Plasma Physics and Controlled Fusion, 2002, 44, 51-59.	0.9	47
252	Turbulent Diffusion of Magnetic Fields in Weakly Ionized Gas. Astrophysical Journal, 2002, 578, L113-L116.	1.6	22

#	Article	IF	CITATIONS
253	Internal viscoelastic waves in a circular Couette flow of a dilute polymer solution. Europhysics Letters, 2002, 60, 704-709.	0.7	4
254	On the Possible Reason for Nondetection of TeV Protons in Supernova Remnants. Astrophysical Journal, 2002, 571, 856-865.	1.6	12
255	On Turbulent Reconnection. Astrophysical Journal, 2001, 556, 1052-1065.	1.6	42
256	Streamer and zonal flow generation from envelope modulations in drift wave turbulence. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 288, 214-219.	0.9	81
257	Secondary instability in drift wave turbulence as a mechanism for zonal flow and avalanche formation. Nuclear Fusion, 2001, 41, 1067-1080.	1.6	116
258	Bursty transport in tokamak turbulence: Role of zonal flows and internal transport barriers. Nuclear Fusion, 2001, 41, 995-1001.	1.6	41
259	Eddy viscosity and laminarization of sheared flow in three dimensional reduced magnetohydrodynamic turbulence. Physics of Plasmas, 2001, 8, 3576-3582.	0.7	21
260	Modern theory of Fermi acceleration: A new challenge to plasma physics. Physics of Plasmas, 2001, 8, 2401-2406.	0.7	10
261	On the stability of drift wave spectra with respect to zonal flow excitation. Physics of Plasmas, 2001, 8, 1553-1558.	0.7	38
262	On the nature of bursting in transport and turbulence in drift wave–zonal flow systems. Physics of Plasmas, 2001, 8, 5073-5076.	0.7	75
263	Bifurcation and scaling of drift wave turbulence intensity with collisional zonal flow damping. Physics of Plasmas, 2001, 8, 3996-4009.	0.7	29
264	A Simple Model of Intermittency in Drift Wave-Zonal Flow Turbulence. Physica Scripta, 2001, T98, 63.	1.2	11
265	Burgers' turbulence with self-consistently evolved pressure. Physical Review E, 2000, 61, 3912-3925.	0.8	16
266	In Search of the Elusive Zonal Flow Using Cross-Bicoherence Analysis. Physical Review Letters, 2000, 84, 4842-4845.	2.9	126
267	Role of ion diamagnetic effects in the generation of large scale flows in toroidal ion temperature gradient mode turbulence. Physics of Plasmas, 2000, 7, 3987.	0.7	58
268	Whistlerization and anisotropy in two-dimensional electron magnetohydrodynamic turbulence. Physics of Plasmas, 2000, 7, 571-579.	0.7	63
269	Coherent Structure Phenomena in Drift Wave–Zonal Flow Turbulence. Physical Review Letters, 2000, 84, 491-494.	2.9	148
270	Active control of edge localized modes by radio frequency waves. Physics of Plasmas, 2000, 7, 4616-4621.	0.7	0

#	Article	IF	CITATIONS
271	Theory of two-dimensional mean field electron magnetohydrodynamics. Physics of Plasmas, 2000, 7, 170-177.	0.7	37
272	Nondiffusive Transport in Tokamaks: Three-Dimensional Structure of Bursts and the Role of Zonal Flows. Physical Review Letters, 2000, 85, 4892-4895.	2.9	150
273	Zonal flow generation by parametric instability in magnetized plasmas and geostrophic fluids. Physics of Plasmas, 2000, 7, 1349-1351.	0.7	148
274	Critical Self-Organization of Astrophysical Shocks. Astrophysical Journal, 2000, 533, L171-L174.	1.6	56
275	The role of nonlinear Landau damping and the bounced motion of protons in the formation of dissipative structures in the solar wind plasma. Nonlinear Processes in Geophysics, 1999, 6, 161-167.	0.6	8
276	Fluctuation level bursts in a model of internal transport barrier formation. Physics of Plasmas, 1999, 6, 854-862.	0.7	11
277	Effects of Collisional Zonal Flow Damping on Turbulent Transport. Physical Review Letters, 1999, 83, 3645-3648.	2.9	237
278	Generalized action invariants for drift waves-zonal flow systems. Physics of Plasmas, 1999, 6, 4410-4413.	0.7	84
279	Comparative studies of core and edge transport barrier dynamics of DIII-D and TFTR tokamak plasmas. Nuclear Fusion, 1999, 39, 1733-1741.	1.6	29
280	Dynamics and control of internal transport barriers in reversed shear discharges. Physics of Plasmas, 1998, 5, 938-952.	0.7	59
281	Turbulent heat and particle flux response to electric field shear. Physics of Plasmas, 1998, 5, 173-177.	0.7	33
282	Asymptotic Theory of Nonlinear Landau Damping and Particle Trapping in Waves of Finite Amplitude. Physical Review Letters, 1998, 81, 5824-5827.	2.9	46
283	Compressible Alfven turbulence in one dimension. Physical Review E, 1998, 58, R2709-R2712.	0.8	13
284	Self-organized states in cellular automata: Exact solution. Physical Review E, 1998, 58, 6824-6827.	0.8	3
285	Dynamics of Transition to Enhanced Confinement in Reversed Magnetic Shear Discharges. Physical Review Letters, 1997, 78, 1472-1475.	2.9	93
286	Towards a simple model of compressible Alfvénic turbulence. Physical Review E, 1997, 56, R2371-R2374.	0.8	6
287	Dissipative Dynamics of Collisionless Nonlinear Alfvén Wave Trains. Physical Review Letters, 1997, 78, 4934-4937.	2.9	36
288	Theory of the spatiotemporal dynamics of transport bifurcations. Physics of Plasmas, 1997, 4, 1087-1096.	0.7	54

#	Article	IF	CITATIONS
289	Suppression of Cross-Field Turbulent Transport of Passive Scalar Concentration in Two Dimensional Magnetohydrodynamics. Physical Review Letters, 1997, 78, 3306-3309.	2.9	7
290	Fluid models for kinetic effects on coherent nonlinear Alfvén waves. II. Numerical solutions. Physics of Plasmas, 1997, 4, 1257-1285.	0.7	55
291	Role of neutrals in the phase transition model. Physics of Plasmas, 1996, 3, 4106-4114.	0.7	35
292	A model realization of selfâ€organized criticality for plasma confinement. Physics of Plasmas, 1996, 3, 2903-2911.	0.7	196
293	The dynamics of sandpiles with a sheared flow. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 218, 58-63.	0.9	23
294	The fusion science research plan for the major U.S. Tokamaks: Advisory Report prepared by major facilities review panel, scientific issues subcommittee, and Fusion Energy Advisory Committee. Journal of Fusion Energy, 1996, 15, 207-248.	0.5	1
295	Transport reduction via shear flow modification of the cross phase. Plasma Physics and Controlled Fusion, 1996, 38, 1343-1347.	0.9	44
296	On the statistical mechanics of selfâ€organized profiles. Physics of Plasmas, 1996, 3, 3745-3753.	0.7	12
297	Anomalous pinch effect and energy exchange in tokamaks. Physics of Plasmas, 1996, 3, 1916-1925.	0.7	49
298	Nonlinear mean field electrodynamics of turbulent dynamos. Physics of Plasmas, 1996, 3, 1853-1857.	0.7	75
299	Fluid models for kinetic effects on coherent nonlinear Alfvén waves. I. Fundamental theory. Physics of Plasmas, 1996, 3, 863-873.	0.7	63
300	Ambipolar magnetic fluctuationâ€induced heat transport in toroidal devices. Physics of Plasmas, 1996, 3, 1999-2005.	0.7	27
301	Plateau regime dynamics of the relaxation of poloidal rotation in tokamak plasmas. Physics of Plasmas, 1996, 3, 3023-3031.	0.7	88
302	The dynamics of marginality and selfâ€organized criticality as a paradigm for turbulent transport. Physics of Plasmas, 1996, 3, 1858-1866.	0.7	209
303	Radial electric field in toroidal plasmas. Plasma Physics and Controlled Fusion, 1996, 38, 1349-1352.	0.9	1
304	A simple dynamical model of edge localized mode phenomena. Plasma Physics and Controlled Fusion, 1996, 38, 1397-1400.	0.9	0
305	A minimal dynamical model of edge localized mode phenomena. Physics of Plasmas, 1995, 2, 3345-3359.	0.7	42
306	Magnetic field diffusion in semiâ€ideal magnetohydrodynamics. Physics of Plasmas, 1995, 2, 3541-3542.	0.7	1

#	Article	IF	Citations
307	Modulational interaction between drift waves and trapped ion convective cells: A paradigm for the selfâ \in consistent interaction of largeâ \in scale sheared flows with smallâ \in scale fluctuations. Physics of Plasmas, 1995, 2, 4420-4431.	0.7	45
308	Isichenko, Gruzinov, and Diamond Reply:. Physical Review Letters, 1995, 75, 3583-3583.	2.9	0
309	Dynamics of secondâ€order phase transitions in resistive pressureâ€gradientâ€driven turbulence. Physics of Plasmas, 1995, 2, 2744-2752.	0.7	43
310	Transport suppression by diamagnetic phase shift as a possible mechanism of the low to high mode transition. Physics of Plasmas, 1995, 2, 2007-2010.	0.7	3
311	Theory of ideal magnetohydrodynamic ballooning stability of a poloidally rotating plasma in a sheared electric field. Physics of Plasmas, 1995, 2, 727-732.	0.7	9
312	Selfâ€consistent mean field electrodynamics of turbulent dynamos. Physics of Plasmas, 1995, 2, 1941-1946.	0.7	63
313	The effect of an external torque on low to high confinement transitions. Physics of Plasmas, 1995, 2, 3044-3048.	0.7	8
314	On the dynamics of turbulent transport near marginal stability. Physics of Plasmas, 1995, 2, 3640-3649.	0.7	330
315	Dynamics of spatiotemporally propagating transport barriers. Physics of Plasmas, 1995, 2, 3685-3695.	0.7	73
316	Invariant Measure and Turbulent Pinch in Tokamaks. Physical Review Letters, 1995, 74, 4436-4439.	2.9	108
317	Dynamics of L to H bifurcation. Plasma Physics and Controlled Fusion, 1994, 36, A93-A98.	0.9	27
318	Effects of nonlinear electron dynamics in a fluid model of collisionless trappedâ€electron mode turbulence. Physics of Plasmas, 1994, 1, 1877-1881.	0.7	7
319	Bifurcations and modulational interaction in negative compressibility turbulence. Physics of Plasmas, 1994, 1, 2700-2710.	0.7	22
320	The dynamics of long wavelength electrostatic turbulence in tokamaks*. Physics of Plasmas, 1994, 1, 1592-1600.	0.7	20
321	Theory of ion Bernstein wave induced shear suppression of turbulence. Physics of Plasmas, 1994, 1, 1944-1952.	0.7	35
322	Theory of electricâ€field curvature effects on longâ€wavelength drift wave turbulence. Physics of Plasmas, 1994, 1, 1142-1153.	0.7	33
323	Drift wave propagation as a source of plasma edge turbulence. Physical Review Letters, 1994, 72, 486-489.	2.9	42
324	Self-Regulating Shear Flow Turbulence: A Paradigm for theLtoHTransition. Physical Review Letters, 1994, 72, 2565-2568.	2.9	336

#	Article	IF	CITATIONS
325	Drift wave propagation as a source of plasma edge turbulence: Slab theory. Physics of Plasmas, 1994 , 1 , $4002-4013$.	0.7	38
326	Spontaneous mean flow shear amplification in turbulent plasmas. Physics of Plasmas, 1994, 1, 3148-3150.	0.7	19
327	Dynamics of low to high (â€~â€~L'' to â€~â€~H'') confinement bifurcation: Poloidal flow and ion pregradient evolution. Physics of Plasmas, 1994, 1, 4014-4021.	essure 0.7	74
328	Self-consistent theory of mean-field electrodynamics. Physical Review Letters, 1994, 72, 1651-1653.	2.9	243
329	Comment on   Critique of atomic physics instability mechanisms: Ionizationâ€driven and radiative microinstabilities in the tokamak edge plasma'' [Phys. Plasmas 1, 2630 (1994)]. Physics of Plasmas, 1994, 2806-2807.	д, 7	4
330	Dynamics of the magnetic shearing instability and magnetohydrodynamic turbulence in accretion disks. 1: Vertical magnetic field. Astrophysical Journal, 1994, 420, 705.	1.6	6
331	Generation of dipolar structures in drift wave turbulence. Plasma Physics and Controlled Fusion, 1993, 35, 1033-1049.	0.9	15
332	A mean field Ohm's law for collisionless plasmas. Physics of Fluids B, 1993, 5, 3838-3840.	1.7	8
333	The dynamics of spectral transfer in a model of drift wave turbulence with two nonlinearities. Physics of Fluids B, 1993, 5, 1140-1153.	1.7	31
334	Revisiting the validity of quasilinear theory. Physics of Fluids B, 1993, 5, 4333-4340.	1.7	16
335	Theory of multipleâ€helicity interactions in dissipative trappedâ€electron drift wave turbulence. Physics of Fluids B, 1993, 5, 1529-1544.	1.7	1
336	A twoâ€nonlinearity model of dissipative drift wave turbulence. Physics of Fluids B, 1993, 5, 1128-1139.	1.7	29
337	Effects of a poloidally asymmetric ionization source on toroidal drift wave stability and the generation of sheared parallel flow. Physics of Fluids B, 1993, 5, 2125-2137.	1.7	1
338	Resistive pressureâ€gradientâ€driven turbulence with selfâ€consistent flow profile evolution. Physics of Fluids B, 1993, 5, 1491-1505.	1.7	69
339	A renormalization group analysis of twoâ€dimensional magnetohydrodynamic turbulence. Physics of Fluids B, 1993, 5, 63-73.	1.7	15
340	Electronâ€ŧemperatureâ€gradientâ€driven instability in tokamak boundary plasma. Physics of Fluids B, 1993, 5, 2206-2214.	1.7	16
341	A selfâ€consistent theory of collective alpha particle losses induced by Alfvénic turbulence. Physics of Fluids B, 1992, 4, 3009-3012.	1.7	8
342	Theory of kinetic Alfvén wave helicity injection and current drive. Physics of Fluids B, 1992, 4, 2560-2566.	1.7	7

#	Article	IF	CITATIONS
343	Dissipative trapped electron modes inl=2 torsatrons. Physics of Fluids B, 1992, 4, 2894-2906.	1.7	27
344	Energy transfer dynamics of dissipative trapped ion convective cell turbulence. Physics of Fluids B, 1992, 4, 599-610.	1.7	22
345	Theory of shear flow effects on longâ€wavelength drift wave turbulence. Physics of Fluids B, 1992, 4, 3115-3131.	1.7	82
346	Theory of driftâ€thermal instabilityâ€induced turbulence. Physics of Fluids B, 1992, 4, 102-116.	1.7	33
347	Theory of ionizationâ€driven drift wave turbulence. Physics of Fluids B, 1992, 4, 877-887.	1.7	47
348	Structure formation and transport in dissipative driftâ€wave turbulence. Physics of Fluids B, 1992, 4, 2785-2793.	1.7	53
349	Stability of ionâ€temperatureâ€gradientâ€driven modes in the presence of sheared poloidal flows. Physics of Fluids B, 1992, 4, 2402-2413.	1.7	50
350	Proton acceleration in neutron star magnetospheres. Astrophysical Journal, 1992, 388, 148.	1.6	5
351	Proton acceleration in neutron star magnetospheres. AIP Conference Proceedings, 1991, , .	0.3	O
352	Equilibrium spectra and implications for a twoâ€field turbulence model. Physics of Fluids B, 1991, 3, 1297-1299.	1.7	15
353	TEXT tokamak edge turbulence modeling. Physics of Fluids B, 1991, 3, 2291-2299.	1.7	46
354	Theory of neoclassical ion temperatureâ€gradientâ€driven turbulence. Physics of Fluids B, 1991, 3, 384-394.	1.7	39
355	Theory of hydrodynamic trappedâ€ionâ€temperatureâ€gradientâ€driven turbulence. Physics of Fluids B, 1991, 3, 1797-1800.	1.7	19
356	Hydrodynamic modes of a granular shear flow. Physics of Fluids A, Fluid Dynamics, 1991, 3, 2067-2075.	1.6	13
357	The observation of isolated longâ€lived current filaments in twoâ€dimensional microtearing turbulence. Physics of Fluids B, 1991, 3, 304-315.	1.7	18
358	Theory of mean poloidal flow generation by turbulence. Physics of Fluids B, 1991, 3, 1626-1633.	1.7	420
359	Statistical dynamics of dissipative drift wave turbulence. Physics of Fluids B, 1991, 3, 955-968.	1.7	51
360	Dynamos and angular momentum transport in accretion disks. Physics of Fluids B, 1991, 3, 2374-2378.	1.7	0

#	Article	IF	Citations
361	Comparison of steadyâ€state and perturbative transport coefficients in TFTR. Physics of Fluids B, 1991, 3, 2315-2323.	1.7	29
362	A kinetic theory of trappedâ€electronâ€driven drift wave turbulence in a sheared magnetic field. Physics of Fluids B, 1991, 3, 68-86.	1.7	48
363	Selfâ€organization in sheared driftâ€wave turbulence. Physics of Fluids B, 1991, 3, 51-67.	1.7	61
364	Observation of temperature-dependent transport in the TFTR tokamak. Physical Review Letters, 1991, 66, 421-424.	2.9	58
365	Theory of shear suppression of edge turbulence by externally driven radio-frequency waves. Physical Review Letters, 1991, 67, 1535-1538.	2.9	105
366	Neoclassical poloidal and toroidal rotation in tokamaks. Physics of Fluids B, 1991, 3, 2050-2060.	1.7	307
367	Comments on â€~â€~Dynamics of decaying twoâ€dimensional magnetohydrodynamic turbulence'' [Phys. B 1, 1964 (1989)]. Physics of Fluids B, 1990, 2, 681-682.	Fluids 1.7	12
368	The structure and dynamics of electrostatic and magnetostatic drift holes. Physics of Fluids B, 1990, 2, 2048-2063.	1.7	36
369	Theory of neoclassical pressureâ€gradientâ€driven turbulence. Physics of Fluids B, 1990, 2, 291-301.	1.7	16
370	A selfâ€consistent theory of radial transport of fieldâ€aligned current by microturbulence. Physics of Fluids B, 1990, 2, 1128-1137.	1.7	21
371	A nonlinear bounceâ€kinetic equation for trapped electrons. Physics of Fluids B, 1990, 2, 2976-2985.	1.7	40
372	Theory of dissipative trapped-ion convective-cell turbulence. Physical Review Letters, 1990, 65, 2865-2868.	2.9	31
373	Local measurements of correlated momentum and heat transport in the TFTR tokamak. Physical Review Letters, 1990, 64, 531-534.	2.9	171
374	Thermally driven turbulence and transport in a sheared system. Physical Review Letters, 1990, 65, 2784-2787.	2.9	19
375	Influence of sheared poloidal rotation on edge turbulence. Physics of Fluids B, 1990, 2, 1-4.	1.7	1,346
376	Theory of resistivityâ€gradientâ€driven turbulence in a differentially rotating plasma. Physics of Fluids B, 1990, 2, 2143-2150.	1.7	23
377	Dynamo action by internal waves in accretion disks. Astrophysical Journal, 1990, 365, 648.	1.6	25
378	Theory of weak ion temperature gradientâ€driven turbulence near the threshold of instability. Physics of Fluids B, 1989, 1, 1980-1992.	1.7	26

#	Article	IF	CITATIONS
379	Toroidal ionâ€pressureâ€gradientâ€driven drift instabilities and transport revisited. Physics of Fluids B, 1989, 1, 109-118.	1.7	146
380	Thermal diffusivity induced by resistive pressureâ€gradientâ€driven turbulence. Physics of Fluids B, 1989, 1, 1011-1017.	1.7	62
381	Statistical mechanics of a twoâ€field model of drift wave turbulence. Physics of Fluids B, 1989, 1, 1331-1333.	1.7	33
382	Ion temperature gradientâ€driven turbulence in tokamaks with flat density profiles. Physics of Fluids B, 1989, 1, 1993-1997.	1.7	7
383	Theory of neoclassical resistivityâ€gradientâ€driven turbulence. Physics of Fluids B, 1989, 1, 2172-2180.	1.7	5
384	Dynamics of magnetic relaxation in a highâ€temperature, currentâ€carrying plasma. Physics of Fluids B, 1989, 1, 99-108.	1.7	7
385	Momentum and thermal transport in neutral-beam-heated tokamaks. Physics of Fluids, 1988, 31, 1180.	1.4	150
386	Saturation of Kelvin–Helmholtz fluctuations in a sheared magnetic field. Physics of Fluids, 1988, 31, 1481.	1.4	21
387	Cascade and Intermittency Model for Turbulent Compressible Self-Gravitating Matter and Self-Binding Phase-Space Density Fluctuations. Physical Review Letters, 1988, 61, 1716-1719.	2.9	11
388	Theory of trappedâ€ionâ€ŧemperatureâ€gradientâ€driven turbulence and transport in lowâ€collisionality plasmas. Physics of Fluids, 1988, 31, 2644-2658.	1.4	38
389	Radial fluctuation scale of ion temperature gradient driven turbulence. Physics of Fluids, 1988, 31, 2920.	1.4	45
390	Nonlinear Ion-Temperature-Gradient-Driven Instability in Low-Collisionality Plasmas. Physical Review Letters, 1988, 60, 200-203.	2.9	14
391	Comment on   Anomalous electron heat transport driven by low-frequency electromagnetic turbulence''. Physical Review Letters, 1988, 60, 966-966.	2.9	4
392	Nonlinear dynamics of tearing modes in the reversed field pinch. Physics of Fluids, 1988, 31, 1166.	1.4	56
393	Fluctuations and anomalous transport (in tokamaks, particularly TEXT). Plasma Physics and Controlled Fusion, 1988, 30, 1479-1491.	0.9	51
394	Theory of resistive pressure-gradient-driven turbulence. Physics of Fluids, 1987, 30, 1388.	1.4	134
395	Role of impurity dynamics in resistivity-gradient-driven turbulence and tokamak edge plasma phenomena. Physics of Fluids, 1987, 30, 1452.	1.4	32
396	Resistive fluid turbulence in diverted tokamaks and the edge transport barrier in H-mode plasmas. Physics of Fluids, 1987, 30, 133.	1.4	53

#	Article	IF	Citations
397	Theory of trapped-particle-induced resistive fluid turbulence. Physics of Fluids, 1987, 30, 3735.	1.4	3
398	Thermally driven convective cells and tokamak edge turbulence. Physics of Fluids, 1987, 30, 3724.	1.4	52
399	Spectrum of resistivity-gradient-driven turbulence. Physics of Fluids, 1986, 29, 2501.	1.4	17
400	Effects of a radial electric field on tokamak edge turbulence. Physics of Fluids, 1986, 29, 231.	1.4	62
401	Reply to comments of J. A. Krommes. Physics of Fluids, 1986, 29, 2758.	1.4	6
402	Theory of ion-temperature-gradient-driven turbulence in tokamaks. Physics of Fluids, 1986, 29, 3291.	1.4	178
403	Self-Consistency Constraints on Turbulent Magnetic Transport and Relaxation in a Collisionless Plasma. Physical Review Letters, 1986, 57, 1899-1902.	2.9	35
404	Dynamics and fluctuation spectra of electrostatic resistive interchange turbulence. Physics of Fluids, 1986, 29, 2871-2880.	1.4	10
405	Three-dimensional particle simulation of drift-wave fluctuations in a sheared magnetic field. Physical Review Letters, 1986, 57, 3269-3272.	2.9	8
406	Particle simulations of current-driven drift waves in shearless and sheared magnetic fields. Physics of Fluids, 1986, 29, 4147.	1.4	4
407	Two-point theory of current-driven, ion-cyclotron turbulence. Physics of Fluids, 1986, 29, 76.	1.4	8
408	Theory of resistivity-gradient-driven turbulence. Physics of Fluids, 1985, 28, 2147.	1.4	79
409	Particle simulation of the resistive g mode in a sheared magnetic field. Physics of Fluids, 1985, 28, 255-260.	1.4	2
410	Kinetic theory of resistive ballooning modes. Physics of Fluids, 1985, 28, 1116.	1.4	42
411	Nonlinear interaction of tearing modes: A comparison between the tokamak and the reversed field pinch configurations. Physics of Fluids, 1985, 28, 261-270.	1.4	27
412	Theory of dissipative density-gradient-driven turbulence in the tokamak edge. Physics of Fluids, 1985, 28, 1419.	1.4	111
413	Nonlinear interaction of toroidicity-induced drift modes. Physics of Fluids, 1984, 27, 916.	1.4	62
414	The effects of compressibility of the resistive ballooning mode. Physics of Fluids, 1984, 27, 1439.	1.4	55

#	Article	IF	CITATIONS
415	Theory of anomalous tearing mode growth and the major tokamak disruption. Physics of Fluids, 1984, 27, 1449.	1.4	77
416	Transport Effects Induced by Resistive Ballooning Modes and Comparison with High- \hat{l}^2 pISX-BTokamak Confinement. Physical Review Letters, 1983, 50, 503-506.	2.9	166
417	Energy transfer of lower-hybrid-drift waves by Compton scattering. Physics of Fluids, 1983, 26, 1481.	1.4	3
418	Effect of turbulent diffusion on collisionless tearing instabilities. Physics of Fluids, 1982, 25, 815.	1.4	12
419	Suppression of the drift-cyclotron instability by lower-hybrid-drift turbulence. Physics of Fluids, 1982, 25, 2005.	1.4	4
420	Theory of the renormalized dielectric for electrostatic drift wave turbulence in tokamaks. Physics of Fluids, 1981, 24, 1641.	1.4	27
421	Self-Consistent Model of Stochastic Magnetic Fields. Physical Review Letters, 1980, 45, 562-565.	2.9	17
422	Quasi-linear theory. , 0, , 72-113.		1