Marek J Sadowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8747447/publications.pdf

Version: 2024-02-01

189 2,100 22 36
papers citations h-index g-index

189 189 189 810
all docs docs citations times ranked citing authors

#	Article	lF	Citations
1	Plasma dynamics in the PF-1000 device under full-scale energy storage: II. Fast electron and ion characteristics versus neutron emission parameters and gun optimization perspectives. Journal Physics D: Applied Physics, 2007, 40, 3592-3607.	2.8	157
2	Comparative analysis of large plasma focus experiments performed at IPF, Stuttgart, and IPJ, Åšwierk. Nuclear Fusion, 1989, 29, 1255-1269.	3.5	101
3	Mass and energy analysis and space-resolved measurements of ions from plasma focus devices. Physics Letters, Section A: General, Atomic and Solid State Physics, 1980, 79, 389-392.	2.1	97
4	Ion emission from plasma-focus facilities. Plasma Physics and Controlled Fusion, 1988, 30, 763-769.	2.1	71
5	Experimental studies of fast deuterons, impurity―and admixtureâ€ions emitted from a plasma focus. Journal of Applied Physics, 1982, 53, 2959-2964.	2.5	67
6	Analysis of the nitrogen ion beam generated in a low-energy plasma focus device by a Faraday cup operating in the secondary electron emission mode. IEEE Transactions on Plasma Science, 1998, 26, 113-117.	1.3	62
7	Filamentary structure of the pinch column in plasma focus discharges. Physics Letters, Section A: General, Atomic and Solid State Physics, 1984, 105, 117-123.	2.1	59
8	Time-resolved studies of deuteron beams emitted from a plasma focus. Physics Letters, Section A: General, Atomic and Solid State Physics, 1981, 83, 435-439.	2.1	46
9	Design and calibration of a Thomson ion analyzer for plasma focus studies. Review of Scientific Instruments, 1981, 52, 24-26.	1.3	35
10	Hot-spots in plasma-focus discharges as intense sources of different radiation pulses. Brazilian Journal of Physics, 2002, 32, 187-192.	1.4	31
11	Measurements of fast ions and neutrons emitted from PF-1000 plasma focus device. Vacuum, 2004, 76, 357-360.	3.5	31
12	Neutron Emission Characteristics of Pinched Dense Magnetized Plasmas. IEEE Transactions on Plasma Science, 2006, 34, 2363-2367.	1.3	31
13	Measurements of charged particle beams from plasma focus discharges. Nuclear Fusion, 2001, 41, 755-759.	3.5	30
14	Cherenkov-type diamond detectors for measurements of fast electrons in the TORE-SUPRA tokamak. Review of Scientific Instruments, 2010, 81, 013504.	1.3	30
15	Update on the Scientific Status of the Plasma Focus. Plasma, 2021, 4, 450-669.	1.8	29
16	Preliminary neutron experiments with the PF-1000 plasma-focus facility. IEEE Transactions on Plasma Science, 2002, 30, 476-481.	1.3	28
17	The main issues of research on dense magnetized plasmas in PF discharges. Plasma Sources Science and Technology, 2008, 17, 024001.	3.1	28
18	Electron beam effects on the spectroscopy of multiply charged ions in plasma focus experiments. Journal of Quantitative Spectroscopy and Radiative Transfer, 1999, 62, 85-96.	2.3	27

#	Article	IF	Citations
19	Spontaneous Transformation in the Pinched Column of the Plasma Focus. IEEE Transactions on Plasma Science, 2011, 39, 562-568.	1.3	27
20	Application of solid-state nuclear track detectors for studies of fast ion beams within PF-1000 and other plasma-focus facilities. Radiation Measurements, 1999, 31, 185-190.	1.4	25
21	Advantage of PM-355 nuclear track detector in light-ion registration and high-temperature plasma diagnostics. Radiation Measurements, 2001, 34, 325-329.	1.4	24
22	Multi-spike structure of ion pulses generated by plasma focus discharges. Physics Letters, Section A: General, Atomic and Solid State Physics, 1985, 113, 25-31.	2.1	22
23	Correlation of Radiation With Electron and Neutron Signals Taken in a Plasma-Focus Device. IEEE Transactions on Plasma Science, 2006, 34, 2349-2355.	1.3	22
24	Plasma confinement with spherical multipole magnetic field. Physics Letters, Section A: General, Atomic and Solid State Physics, 1967, 25, 695-696.	2.1	21
25	Correlation between pinch dynamics, neutron and X-ray emission from megajoule plasma focus device. Vacuum, 2004, 76, 361-364.	3.5	20
26	UHV arc for high quality film deposition. Surface and Coatings Technology, 2006, 201, 3987-3992.	4.8	19
27	Simulation of plasma–surface interactions in a fusion reactor by means of QSPA plasma streams: recent results and prospects. Physica Scripta, 2016, 91, 094001.	2.5	18
28	Gas-puff target experiments with the Poseidon plasma focus facility. Plasma Physics and Controlled Fusion, 1994, 36, 13-24.	2.1	17
29	Comparison of responses of CR-39 and PM-355 track detectors to fast protons, deuterons and 4He ions within energy range 0.2–4.5 MeV. Radiation Measurements, 1995, 25, 175-176.	1.4	17
30	Comparison of responses of LR-115A, CR-39 and PM-355 track detectors to pulsed low-energy proton streams. Radiation Measurements, 2005, 40, 371-374.	1.4	17
31	Filamentation in the pinched column of the dense plasma focus. Physics of Plasmas, 2017, 24, 032706.	1.9	17
32	Spherical Multipole Magnets for Plasma Research. Review of Scientific Instruments, 1969, 40, 1545-1549.	1.3	16
33	Spatial structure and energy spectrum of ion beams studied with CN detectors within a small PF device. Radiation Measurements, 2001, 34, 315-318.	1.4	16
34	Influence of intensive \hat{I}^3 and electron radiation on tracks formation in the PM-355 detectors. Radiation Measurements, 2003, 36, 111-113.	1.4	16
35	Formation and role of filaments in high-current discharges of the pinch type. European Physical Journal D, 2006, 56, B364-B370.	0.4	16
36	Characterisation of laser-produced tungsten plasma using optical spectroscopy method. European Physical Journal D, 2009, 54, 463-466.	1.3	16

#	Article	IF	Citations
37	Neutron production from puffing deuterium in plasma focus device. Physics of Plasmas, 2014, 21, 082706.	1.9	16
38	X-ray polarization studies of plasma focus experiments with a single hot spots. Nuclear Fusion, 2004, 44, 395-399.	3.5	15
39	Application of intense plasma-ion streams emitted from powerful PF-type discharges for material engineering. Physica Scripta, 2006, T123, 66-78.	2.5	15
40	Use of Cherenkov-type detectors for measurements of runaway electrons in the ISTTOK tokamak. Review of Scientific Instruments, 2008, 79, 10F505.	1.3	15
41	Optical emission spectroscopy of deuterium and helium plasma jets emitted from plasma focus discharges at the PF-1000U facility. Physics of Plasmas, 2016, 23, .	1.9	15
42	Increase in the neutron yield from a dense plasma-focus experiment performed with a conical tip placed in the centre of the anode end. Physics of Plasmas, 2017, 24, .	1.9	15
43	Evolution of a Pinch Column During the Acceleration of Fast Electrons and Deuterons in a Plasma-Focus Discharge. IEEE Transactions on Plasma Science, 2019, 47, 339-345.	1.3	15
44	Comparison of responses of CR-39, PM-355, and CN track detectors to energetic hydrogen-, helium-, nitrogen-, and oxygen-ions. Radiation Measurements, 1997, 28, 207-210.	1.4	14
45	Measurement of fusion-reaction protons in TEXTOR tokamak plasma by means of solid-state nuclear track detectors of the CR-39/PM-355 type. Radiation Measurements, 2008, 43, S290-S294.	1.4	14
46	Tungsten damage and melt losses under plasma accelerator exposure with ITER ELM relevant conditions. Physica Scripta, 2014, T159, 014024.	2.5	14
47	Cherenkov emission provides detailed picture of non-thermal electron dynamics in the presence of magnetic islands. Nuclear Fusion, 2015, 55, 123021.	3.5	14
48	Studies of runaway electrons via Cherenkov effect in tokamaks. Journal of Physics: Conference Series, 2018, 959, 012002.	0.4	14
49	Features of fast deuterons emitted from plasma focus discharges. Physics of Plasmas, 2019, 26, 032702.	1.9	14
50	Calibration of CN and CR-39 track detectors for measurements of fast deuterons and nitrogen ions. Radiation Measurements, 1997, 28, 201-206.	1.4	13
51	Investigation of response of CR-39, PM-355 and PM-500 types of nuclear track detectors to energetic carbon ions. Radiation Measurements, 1999, 31, 257-260.	1.4	13
52	Adaptation of selected diagnostic techniques to magnetic confinement fusion experiments. European Physical Journal D, 2004, 54, C74-C81.	0.4	13
53	Measurements of fusion-produced protons by means of SSNTDs. Radiation Measurements, 2008, 43, S295-S298.	1.4	13
54	Simulation of ITER edge-localized modes' impacts on the divertor surfaces within plasma accelerators. Physica Scripta, 2011, T145, 014061.	2.5	13

#	Article	IF	Citations
55	Note: Measurements of fast electrons in the TORE-SUPRA tokamak by means of modified Cherenkov-type diamond detector. Review of Scientific Instruments, 2013, 84, 016107.	1.3	13
56	The influence of the nitrogen admixture on the evolution of a deuterium pinch column. Physics of Plasmas, 2016, 23, 082704.	1.9	12
57	Calibration of PM-355 nuclear track detectors; comparison of track diameter diagrams with track depth characteristics. Radiation Measurements, 2005, 40, 401-403.	1.4	11
58	Experimental studies of radiation resistance of boron nitride, C2C ceramics Al2O3and carbon–fiber composites using a PF-1000 plasma-focus device. Physica Scripta, 2011, 83, 045606.	2.5	11
59	High power plasma interaction with tungsten grades in ITER relevant conditions. Journal of Physics: Conference Series, 2015, 591, 012030.	0.4	11
60	Laboratory simulations of astrophysical jets: results from experiments at the PF-3, PF-1000U, and KPF-4 facilities. Journal of Physics: Conference Series, 2017, 907, 012026.	0.4	11
61	The physics of a plasma focus. European Physical Journal D, 2004, 54, C170-C185.	0.4	10
62	Investigation of interactions of intense plasma streams with tungsten and carbon fibre composite targets in the PF-1000 facility. Physica Scripta, 2014, T161, 014038.	2.5	10
63	Overview of the FTU results. Nuclear Fusion, 2015, 55, 104005.	3.5	10
64	Recent ion measurements within the modified DPF-1000U facility. Nukleonika, 2015, 60, 297-302.	0.8	10
65	Plasma containment in a spherical multipole magnetic trap. Journal of Plasma Physics, 1970, 4, 1-12.	2.1	9
66	Low-energy ion measurements by means of CR-39 nuclear track detectors. Radiation Measurements, 2001, 34, 337-339.	1.4	9
67	The Cu spectra as a tool for late plasma focus diagnostics. Journal of Physics: Conference Series, 2006, 44, 175-178.	0.4	9
68	Measurements of fast deuterons from plasma accelerator by means of PM-355 track detectors. Radiation Measurements, 2009, 44, 870-873.	1.4	9
69	Development of a diagnostic technique based on Cherenkov effect for measurements of fast electrons in fusion devices. Review of Scientific Instruments, 2012, 83, 083505.	1.3	9
70	Characterization of the Neutron Production in the Modified MA Plasma Focus. IEEE Transactions on Plasma Science, 2012, 40, 1075-1081.	1.3	9
71	Research on soft x-rays in high-current plasma-focus discharges and estimation of plasma electron temperature. Plasma Physics and Controlled Fusion, 2016, 58, 095003.	2.1	9
72	Characterization of fast deuterons involved in the production of fusion neutrons in a dense plasma focus. Physics of Plasmas, $2018, 25, \ldots$	1.9	9

#	Article	IF	Citations
73	Containment time of plasma in the SM magnetic trap. Physics Letters, Section A: General, Atomic and Solid State Physics, 1969, 28, 626-627.	2.1	8
74	Space-resolved studies of X-ray spectra within Plasma-Focus system. European Physical Journal D, 2000, 50, 173.	0.4	8
75	Super-conducting niobium films produced by means of UHV arc. European Physical Journal D, 2004, 54, C914-C921.	0.4	8
76	Deposition of superconducting niobium films for RF cavities by means of UHV cathodic Arc. Vacuum, 2006, 80, 1288-1293.	3.5	8
77	Design and tests of Cherenkov detector for measurements of fast electrons within Castor tokamak. European Physical Journal D, 2006, 56, B98-B103.	0.4	8
78	Application of PM-355 track detectors for investigation of the spatial structure of plasma–proton streams. Radiation Measurements, 2009, 44, 865-869.	1.4	8
79	Energy Transformations in Column of Plasma-Focus Discharges With Megaampere Currents. IEEE Transactions on Plasma Science, 2012, 40, 481-486.	1.3	8
80	Soft x-ray studies of plasma-focus pinch structures in PF-1000U experiments. Plasma Sources Science and Technology, 2015, 24, 055003.	3.1	8
81	Development of a Cherenkov-type diagnostic system to study runaway electrons within the COMPASS tokamak. Journal of Instrumentation, 2017, 12, C10014-C10014.	1.2	8
82	Dosimetry of Low Energy Ions by Means of Solid State Nuclear Track Detectors. Radiation Protection Dosimetry, 2002, 101, 585-588.	0.8	7
83	Characterization of pulsed plasma-ion streams emitted from RPI-type devices applied for material engineering. Applied Surface Science, 2004, 238, 433-437.	6.1	7
84	Characteristics of four-channel Cherenkov-type detector for measurements of runaway electrons in the ISTTOK tokamak. Review of Scientific Instruments, 2010, 81, 10D304.	1.3	7
85	On coating adhesion during impulse plasma deposition. Physica Scripta, 2014, T161, 014063.	2.5	7
86	Influence of the Al wire placed in the anode axis on the transformation of the deuterium plasma column in the plasma focus discharge. Physics of Plasmas, 2016, 23, 062702.	1.9	7
87	OES studies of plasmoids distribution during the coating deposition with the use of the Impulse Plasma Deposition method controlled by the gas injection. Vacuum, 2016, 128, 259-264.	3.5	7
88	Transformation of the ordered internal structures during the acceleration of fast charged particles in a dense plasma focus. Physics of Plasmas, 2017, 24, 072706.	1.9	7
89	Evolution of the Pinched Column During Hard X-ray and Neutron Emission in a Dense Plasma Focus. Journal of Fusion Energy, 2019, 38, 490-498.	1.2	7
90	Spherical multipole as a plasma magnetic trap. Physics Letters, Section A: General, Atomic and Solid State Physics, 1968, 27, 435-436.	2.1	6

#	Article	IF	Citations
91	Optical spectroscopy with high temporal resolution within PF-1000 facility. European Physical Journal D, 2004, 54, C250-C255.	0.4	6
92	Advantages of the use of solid-state nuclear track detectors in high-temperature plasma experiments. Radiation Measurements, 2005, 40, 479-482.	1.4	6
93	Measurements of ion micro-beams in RPI-type discharges and fusion protons in PF-1000 experiments. Physica Scripta, 2006, T123, 104-111.	2.5	6
94	General characteristics of fusion-neutron emission from megajoule plasma-focus facility. European Physical Journal D, 2006, 56, B243-B249.	0.4	6
95	Plasma exposure of different tungsten grades with plasma accelerators under ITER-relevant conditions. Physica Scripta, 2014, T161, 014040.	2.5	6
96	Materials surface damage and modification under high power plasma exposures. Journal of Physics: Conference Series, 2018, 959, 012004.	0.4	6
97	Influence of gas conditions on parameters of plasma jets generated in the PF-1000U plasma-focus facility. Physics of Plasmas, 2018, 25, .	1.9	6
98	Characteristics of closed currents and magnetic fields outside the dense pinch column in a plasma focus discharge. Physics of Plasmas, 2020, 27, .	1.9	6
99	Application of PM-355 Solid-State Nulear Track Detectors for ion diagnostics in high-temperature plasma experiments. European Physical Journal D, 2004, 54, C223-C227.	0.4	5
100	Study of spatial structure and energy spectrum of ion beams by means of LR 115A and PM-355 nuclear track detectors. Radiation Measurements, 2005, 40, 475-478.	1.4	5
101	In-line and following-up tests of perspective fusion-reactor materials in plasma focus devices. European Physical Journal D, 2006, 56, 1401-1416.	0.4	5
102	Purity of Nb and Pb Films Deposited by an Ultrahigh Vacuum Cathodic Arc. IEEE Transactions on Plasma Science, 2007, 35, 1000-1003.	1.3	5
103	Research on anisotropy of fusion-produced protons and neutrons emission from high-current plasma-focus discharges. Review of Scientific Instruments, 2015, 86, 013502.	1.3	5
104	Scenario of a magnetic dynamo and magnetic reconnection in a plasma focus discharge. Matter and Radiation at Extremes, 2020, 5, 046401.	3.9	5
105	Characteristics of fast deuteron sources generated in a dense plasma focus. European Physical Journal Plus, 2021, 136, 1.	2.6	5
106	Temporal characteristics of electron beams from plasma-focus and their correlation with highly-ionized Ar-lines. European Physical Journal D, 2004, 54, C291-C297.	0.4	4
107	Magnetic filters in UHV arc-discharges: constructions, field modelling and tests of efficiency. Physica Scripta, 2006, T123, 135-139.	2.5	4
108	Time-integrated measurements of fusion-produced protons emitted from PF-facilities. AIP Conference Proceedings, 2006, , .	0.4	4

#	Article	IF	CITATIONS
109	Time delay of the hard X-ray and neutron emission at PF 1000 facility. European Physical Journal D, 2006, 56, B273-B279.	0.4	4
110	Investigation of fusion-reaction protons from PF-discharges. European Physical Journal D, 2006, 56, B303-B308.	0.4	4
111	Corpuscular diagnostics of deuterium-plasma streams from RPI-IBIS discharges. European Physical Journal D, 2006, 56, B309-B314.	0.4	4
112	Investigation of laser interaction with tungsten target by means of time-resolved optical spectroscopy. Radiation Effects and Defects in Solids, 2008, 163, 569-577.	1.2	4
113	Diagnostics of Fast Electrons within Castor Tokamak by Means of a Modified Cherenkov-Type Probe. AIP Conference Proceedings, 2008, , .	0.4	4
114	Mass- and energy-analyses of ions from plasma by means of a miniature Thomson spectrometer. Review of Scientific Instruments, 2009, 80, 053504.	1.3	4
115	Measurement of high-energy electrons by means of a Cherenkov detector in ISTTOK tokamak. Radiation Measurements, 2010, 45, 1014-1019.	1.4	4
116	Spectroscopy of Plasma Surface Interaction in Experiments Simulating ITER Transient Events. Fusion Science and Technology, 2011, 60, 27-33.	1.1	4
117	Interferometry and X-ray diagnostics of pinched helium plasma in a dense plasma focus with an Al-wire on the axis. Physics of Plasmas, 2016, 23, .	1.9	4
118	Influence of gas conditions on electron temperature inside a pinch column of plasma-focus discharge. Journal of Physics: Conference Series, 2018, 959, 012003.	0.4	4
119	Temporal behavior of hard x-ray and neutron production in plasma focus discharges. Physics of Plasmas, 2022, 29, .	1.9	4
120	Influence of CD2 fiber on the compression in the PF-1000 facility. European Physical Journal D, 2004, 54, C285-C290.	0.4	3
121	Correlation Of Neutron Emission With Other Corpuscular And X-Ray Pulses In Different Plasma-Focus Experiments. AIP Conference Proceedings, 2006, , .	0.4	3
122	Recent Results of MJ Plasma-Focus Experiment. AIP Conference Proceedings, 2006, , .	0.4	3
123	Cathodic arc grown niobium films for RF superconducting cavity applications. Physica C: Superconductivity and Its Applications, 2006, 441, 130-133.	1.2	3
124	Investigation of pinch dynamics in plasma-focus discharges by means of fast-streak-and fast-frame-cameras. European Physical Journal D, 2006, 56, B184-B191.	0.4	3
125	Theoretical and experimental study of plasma dynamics in PF-1000 facility. European Physical Journal D, 2006, 56, B401-B405.	0.4	3
126	Calibration of PM-355 nuclear track detectors for low-energy deuterons. Radiation Measurements, 2008, 43, S286-S289.	1.4	3

#	Article	IF	CITATIONS
127	Studies of Pulsed Plasma-Ion Streams During Their Free Propagation And Interaction With Carbon-Tungsten Targets In PF-1000 Facility. AIP Conference Proceedings, 2008, , .	0.4	3
128	Experimental Studies of Fast Protons Originated from Fusion Reactions in Plasma-Focus Discharges. AIP Conference Proceedings, 2008, , .	0.4	3
129	Research on interactions of intense plasma-ion streams with a SiC target in a modified PF-1000 facility. Physica Scripta, 2014, T161, 014039.	2.5	3
130	Recent measurements of soft X-ray emission from the DPF-1000U facility. Nukleonika, 2015, 60, 303-308.	0.8	3
131	Axial compression of plasma structures in a plasma focus discharge. Physics of Plasmas, 2018, 25, 062712.	1.9	3
132	Measurements of fast electron beams and soft X-ray emission from plasma-focus experiments. Nukleonika, 2016, 61, 161-167.	0.8	3
133	Application of CR-39 detectors for study of corpuscular emission from Prague capillary pinch. Radiation Measurements, 2003, 36, 321-325.	1.4	2
134	Calibration and application of Solid-State Nuclear Track Detectors in spectroscopy of heavier ions of energy in a few MeV/amu range. European Physical Journal D, 2004, 54, C228-C233.	0.4	2
135	Study of X-ray and Neutron Emission in Experiments with Al Wires in an MA Plasma Focus. Plasma Physics Reports, 2005, 31, 382.	0.9	2
136	Progress in Numerical Modeling of Plasma-Focus Discharge. AIP Conference Proceedings, 2006, , .	0.4	2
137	Correlation of Radiation and Electron and Neutron Signals at PF-1000. AIP Conference Proceedings, 2006, , .	0.4	2
138	Miniature Thomson-type spectrometer for mass-and energy-analysis of pulsed plasma-ion streams. European Physical Journal D, 2006, 56, B199-B204.	0.4	2
139	<title>Recent achievements in ultra-high vacuum arc deposition of superconducting Nb layers</title> . Proceedings of SPIE, 2007, , .	0.8	2
140	Cherenkov Detector For Measurements Of Fast Electrons In CASTOR-Tokamak. AIP Conference Proceedings, 2008, , .	0.4	2
141	Application of SSNTDs for measurements of fusion reaction products in high-temperature plasma experiments. Radiation Measurements, 2009, 44, 878-880.	1.4	2
142	Computer simulation of charged fusion-product trajectories and detection efficiency expected for future experiments within the COMPASS tokamak. Physica Scripta, 2014, T161, 014013.	2.5	2
143	Cherenkov-type diagnostics of fast electrons within tokamak plasmas. Physica Scripta, 2014, T161, 014011.	2.5	2
144	Dense Plasma Focus: physics and applications (radiation material science, single-shot disclosure of) Tj ETQq0 0 0 2015, 591, 012020.	o.4	erlock 10 Tf 50 2

2015, 591, 012020.

#	Article	IF	CITATIONS
145	Comparison of optical spectra recorded during DPF-1000U plasma experiments with gas-puffing. Nukleonika, 2015, 60, 309-314.	0.8	2
146	Studies of plasma interactions with tungsten targets in PF-1000U facility. Nukleonika, 2016, 61, 149-153.	0.8	2
147	Cherenkov probes and runaway electrons diagnostics. European Physical Journal Plus, 2021, 136, 1.	2.6	2
148	X-ray and Neutron Emission from PF-1000 Facility. AIP Conference Proceedings, 2002, , .	0.4	1
149	Time-resolved electron density measurements in PF-1000 device by means of the Mechelle® 900 optical spectrometer. European Physical Journal D, 2004, 54, C239-C243.	0.4	1
150	Studies of electron beams and X-Rays within different plasma-focus devices. European Physical Journal D, 2004, 54, C256-C263.	0.4	1
151	Time-Resolved Measurements of Polarized X-Ray Spectral Lines Emitted from Discharges of the Plasma-Focus Type. AIP Conference Proceedings, 2006, , .	0.4	1
152	Analysis Of The Structure Of Ion Micro-Beams Emitted From RPI- And PF-Type Facilities. AIP Conference Proceedings, 2006, , .	0.4	1
153	Temporal and spatial measurements of plasma electron-density from linear-stark broadening of DÎ ² (486) Tj ETQq1	1 1 0.7843 0.4	8 1 4 rgBT /○
154	Observation of tungsten spectral lines during interaction of laser beam with tungsten target. European Physical Journal D, 2006, 56, B550-B556.	0.4	1
155	Investigation Of Plasma Discharges Within Maja-PF Device Operated With Tungsten Inserts In The Central Electrode. AIP Conference Proceedings, 2008, , .	0.4	1
156	Damages of Carbon-Tungsten Samples under Influence of Deuterium Ions and Dense Plasma Streams within Plasma-Focus Facility. AIP Conference Proceedings, 2008, , .	0.4	1
157	Study of D-D Reaction at the Plasma Focus Device. AIP Conference Proceedings, 2008, , .	0.4	1
158	Study of plasma produced from deuterized-titanium irradiated by intense laser pulses. Radiation Effects and Defects in Solids, 2010, 165, 412-418.	1.2	1
159	New data on electron beams and hard x-ray emission in the ISTTOK tokamak. Physica Scripta, 2014, T161, 014012.	2.5	1
160	Study of tungsten surface interaction with plasma streams at DPF-1000U. Nukleonika, 2015, 60, 293-296.	0.8	1
161	Energy- and time-resolved measurements of fast ions emitted from plasma-focus discharges by means of a Thomson spectrometer. , $2015, , .$		1
162	Influence of an external additional magnetic field on the formation of a plasma column in a dense plasma focus. Physics of Plasmas, 2019, 26, 102701.	1.9	1

#	Article	IF	Citations
163	Important problems of future thermonuclear reactors*. Nukleonika, 2015, 60, 331-338.	0.8	1
164	High-order spherical magnetic multipoles for surface confinement of plasma. IEEE Transactions on Magnetics, 1981, 17, 1938-1941.	2.1	0
165	Correlation of x-ray and neutron emissions from an ion implosion system. Physics Letters, Section A: General, Atomic and Solid State Physics, 1986, 116, 49-53.	2.1	0
166	Time-integrated and time-resolved studies of pulsed ion beams from fast micro-capillary discharges. European Physical Journal D, 2000, 50, 164.	0.4	0
167	Time-resolved optical spectroscopy of high-temperature plasmas. , 2005, 5948, 46.		0
168	Thin superconducting niobium-coatings for RF accelerator cavities. , 2005, , .		0
169	Spectral Characteristics of Deuterium-, Helium- and Gas-Mixture-Discharges within PF-1000 Facility. AIP Conference Proceedings, 2006, , .	0.4	0
170	Diagnostics of PF-1000 Facility Operation and Plasma Concentration on the Basis of Spectral Measurements. AIP Conference Proceedings, 2006, , .	0.4	0
171	Characteristics of Neutron Pulses at PF- 1000. AIP Conference Proceedings, 2006, , .	0.4	0
172	Time-Resolved Optical Spectroscopy of Plasma Interaction with CD2 Fiber in PF-1000 Facility. AIP Conference Proceedings, 2006, , .	0.4	0
173	Comparative Analysis of Changes in Optical- and Constructive-Materials Irradiated by Powerful Plasma-lon Streams Generated within RPI- and PF-Devices. AIP Conference Proceedings, 2006, , .	0.4	0
174	Fusion-reaction protons measurements within TEXTOR by means of solid-state nuclear track detectors. European Physical Journal D, 2006, 56, B156-B161.	0.4	0
175	Studies of X-ray Spectral Lines Polarization in Correlation with the Emission of Supra-thermal Electrons in Plasma-Focus Discharges. AIP Conference Proceedings, 2006, , .	0.4	0
176	Deposition of Thin Metal Films by Means of Arc Discharges under Ultra-High Vacuum Conditions. , 2007, , .		0
177	Time resolving study of D-D reaction at the plasma focus device. , 2007, , .		0
178	Structure of Nb Films Deposited by Means of Ultra-High Vacuum Cathodic Arc Technique. AIP Conference Proceedings, 2008, , .	0.4	0
179	Modified Miniature Thomson-Type Analyzer For Measurements Of Mass- and Energy-Spectra Of Ions Within Plasma Facilities. AIP Conference Proceedings, 2008, , .	0.4	O
180	Application of Solid State Nuclear Track Detectors in TEXTOR Experiment for Measurements of Fusion-Reaction Protons. AIP Conference Proceedings, 2008, , .	0.4	0

#	Article	IF	Citations
181	Correlation of Electron Beams and Hard Xâ€ray Emissions in ISTTOK Tokamak. Contributions To Plasma Physics, 2013, 53, 615-622.	1.1	0
182	Research on laser-removal of a deuterium deposit from a graphite sample. Journal of Physics: Conference Series, 2014, 508, 012015.	0.4	0
183	PLASMA-2013: International Conference on Research and Applications of Plasmas (Warsaw, Poland, 2–6) Tj ET	Qq1_1 0.7	84314 rgBT
184	Measurements and computer modeling of fast ion emission from plasma accelerators of the rod plasma injector type. Physica Scripta, 2014, T161, 014054.	2.5	0
185	Signal acquisition in Cherenkov-type diagnostics of electron beams within tokamak facilities. Proceedings of SPIE, 2015, , .	0.8	0
186	Selected methods of electron-and ion-diagnostics in tokamak scrape-off-layer. Nukleonika, 2015, 60, 199-206.	0.8	0
187	Research on interactions of plasma streams with CFC targets in the Rod Plasma Injector facility. Nukleonika, 2016, 61, 179-183.	0.8	0
188	Analysis of optical spectra from steel samples exposed to pulsed plasma streams. Journal of Physics: Conference Series, 2018, 959, 012006.	0.4	0
189	CALIBRATION AND APPLICATION OF CR-39 TYPE NUCLEAR TRACK DETECTORS IN PLASMA FOCUS AND OTHER PLASMA EXPERIMENTS. High Temperature Material Processes, 2003, 7, 569-578.	0.6	O