Riccardo Marin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8746588/publications.pdf

Version: 2024-02-01

236925 276875 1,726 48 25 41 citations h-index g-index papers 50 50 50 2175 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Reliable and Remote Monitoring of Absolute Temperature during Liver Inflammation via Luminescenceâ€Lifetimeâ€Based Nanothermometry. Advanced Materials, 2022, 34, e2107764.	21.0	34
2	Luminescence thermometry using sprayed films of metal complexes. Journal of Materials Chemistry C, 2022, 10, 1767-1775.	5.5	10
3	Boosting the Near-Infrared Emission of Ag ₂ S Nanoparticles by a Controllable Surface Treatment for Bioimaging Applications. ACS Applied Materials & Samp; Interfaces, 2022, 14, 4871-4881.	8.0	16
4	Bismuth Selenide Nanostructured Clusters as Optical Coherence Tomography Contrast Agents: Beyond Gold-Based Particles. ACS Photonics, 2022, 9, 559-566.	6.6	4
5	New opportunities for light-based tumor treatment with an "iron fist― Light: Science and Applications, 2022, 11, 65.	16.6	3
6	A zero-field single-molecule magnet with luminescence thermometry capabilities containing soft donors. Journal of Materials Chemistry C, 2022, 10, 13946-13953.	5 . 5	14
7	Quantitative Comparison of the Light-to-Heat Conversion Efficiency in Nanomaterials Suitable for Photothermal Therapy. ACS Applied Materials & Samp; Interfaces, 2022, 14, 33555-33566.	8.0	32
8	Doping Lanthanide Ions in Colloidal Semiconductor Nanocrystals for Brighter Photoluminescence. Chemical Reviews, 2021, 121, 1425-1462.	47.7	94
9	Asymmetric Ring Opening in a Tetrazineâ€Based Ligand Affords a Tetranuclear Optoâ€Magnetic Ytterbium Complex. Chemistry - A European Journal, 2021, 27, 2361-2370.	3.3	6
10	Multifunktionale Einzelmolek $\tilde{A}^{1}\!\!/\!\!a$ lmagnete auf Lanthanoidbasis in neuem Licht. Angewandte Chemie, 2021, 133, 1752-1772.	2.0	18
11	Shining New Light on Multifunctional Lanthanide Singleâ€Molecule Magnets. Angewandte Chemie - International Edition, 2021, 60, 1728-1746.	13.8	183
12	<i>Quo Vadis</i> , Nanoparticle-Enabled <i>In Vivo</i> Fluorescence Imaging?. ACS Nano, 2021, 15, 1917-1941.	14.6	33
13	Switching to the brighter lane: pathways to boost the absorption of lanthanide-doped nanoparticles. Nanoscale Horizons, 2021, 6, 209-230.	8.0	26
14	Infraredâ€Emitting Multimodal Nanostructures for Controlled In Vivo Magnetic Hyperthermia. Advanced Materials, 2021, 33, e2100077.	21.0	51
15	In Vivo Nearâ€Infrared Imaging Using Ternary Selenide Semiconductor Nanoparticles with an Uncommon Crystal Structure. Small, 2021, 17, e2103505.	10.0	6
16	Near infrared bioimaging and biosensing with semiconductor and rare-earth nanoparticles: recent developments in multifunctional nanomaterials. Nanoscale Advances, 2021, 3, 6310-6329.	4.6	25
17	Tunable Energy-Transfer Process in Heterometallic MOF Materials Based on 2,6-Naphthalenedicarboxylate: Solid-State Lighting and Near-Infrared Luminescence Thermometry. Chemistry of Materials, 2020, 32, 7458-7468.	6.7	54
18	Spectral characterization of LiYbF ₄ upconverting nanoparticles. Nanoscale, 2020, 12, 17545-17554.	5.6	19

#	Article	IF	Citations
19	Influence of halide ions on the structure and properties of copper indium sulphide quantum dots. Chemical Communications, 2020, 56, 3341-3344.	4.1	6
20	Plasmonic Copper Sulfide Nanoparticles Enable Dark Contrast in Optical Coherence Tomography. Advanced Healthcare Materials, 2020, 9, e1901627.	7.6	21
21	Investigation of the concentration- and temperature-dependent motion of colloidal nanoparticles. Nanoscale, 2020, 12, 12561-12567.	5.6	7
22	Tripletâ€State Position and Crystalâ€Field Tuning in Optoâ€Magnetic Lanthanide Complexes: Two Sides of the Same Coin. Chemistry - A European Journal, 2019, 25, 14625-14637.	3.3	32
23	Exploring the dual functionality of an ytterbium complex for luminescence thermometry and slow magnetic relaxation. Chemical Science, 2019, 10, 6799-6808.	7.4	83
24	A Luminescent Thermometer Exhibiting Slow Relaxation of the Magnetization: Toward Self-Monitored Building Blocks for Next-Generation Optomagnetic Devices. ACS Central Science, 2019, 5, 1187-1198.	11.3	113
25	Cubic <i>versus</i> hexagonal – effect of host crystallinity on the <i>T</i> ₁ shortening behaviour of NaGdF ₄ nanoparticles. Nanoscale, 2019, 11, 6794-6801.	5.6	28
26	Europium-doped ZnO nanosponges – controlling optical properties and photocatalytic activity. Journal of Materials Chemistry C, 2019, 7, 3909-3919.	5.5	27
27	Mercaptosilane-Passivated CulnS2 Quantum Dots for Luminescence Thermometry and Luminescent Labels. ACS Applied Nano Materials, 2019, 2, 2426-2436.	5.0	26
28	Pick your precursor! Tailoring the size and crystal phase of microwave-synthesized sub-10 nm upconverting nanoparticles. Journal of Materials Chemistry C, 2019, 7, 15364-15374.	5.5	27
29	Decoupling Theranostics with Rare Earth Doped Nanoparticles. Advanced Functional Materials, 2019, 29, 1807105.	14.9	68
30	Harnessing the Synergy between Upconverting Nanoparticles and Lanthanide Complexes in a Multiwavelength-Responsive Hybrid System. ACS Photonics, 2019, 6, 436-445.	6.6	14
31	Seeded growth of gold nanorods: the effect of sulfur-containing quenching agents. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	4
32	Upconverting Nanoparticle to Quantum Dot FÃ \P rster Resonance Energy Transfer: Increasing the Efficiency through Donor Design. ACS Photonics, 2018, 5, 2261-2270.	6.6	63
33	Microwave-Assisted Solvothermal Synthesis of Upconverting and Downshifting Rare-Earth-Doped LiYF ₄ Microparticles. Inorganic Chemistry, 2018, 57, 14920-14929.	4.0	25
34	Highly Efficient Copper Sulfideâ€Based Nearâ€Infrared Photothermal Agents: Exploring the Limits of Macroscopic Heat Conversion. Small, 2018, 14, e1803282.	10.0	54
35	Small and Bright Lithium-Based Upconverting Nanoparticles. Journal of the American Chemical Society, 2018, 140, 12890-12899.	13.7	91
36	Double rare-earth nanothermometer in aqueous media: opening the third optical transparency window to temperature sensing. Nanoscale, 2017, 9, 3079-3085.	5.6	145

#	Article	IF	CITATIONS
37	Covering the optical spectrum through collective rare-earth doping of NaGdF ₄ nanoparticles: 806 and 980 nm excitation routes. Physical Chemistry Chemical Physics, 2017, 19, 11825-11834.	2.8	33
38	Pegylated silica nanoparticles: cytotoxicity and macrophage uptake. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	11
39	Determining europium compositional fluctuations in partially stabilized zirconia nanopowders: a non-line-broadening-based method. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2016, 72, 29-38.	1.1	3
40	Energy transfer in color-tunable water-dispersible Tb–Eu codoped CaF ₂ nanocrystals. Journal of Materials Chemistry C, 2016, 4, 1906-1913.	5. 5	40
41	A novel triphenylamine-based dye sensitizer supported on titania nanoparticles and the effect of titania fabrication on its optical properties. Chemical Papers, 2016, 70, .	2.2	2
42	Structural and photophysical properties of rare-earth complexes encapsulated into surface modified mesoporous silica nanoparticles. Dalton Transactions, 2014, 43, 16183-16196.	3.3	27
43	Energy Transfer in Bi- and Er-Codoped Y ₂ O ₃ Nanocrystals: An Effective System for Rare Earth Fluorescence Enhancement. Journal of Physical Chemistry C, 2014, 118, 30071-30078.	3.1	43
44	Behavior of TiO2 nanoparticles during incineration of solid paint waste: A lab-scale test. Waste Management, 2014, 34, 1897-1907.	7.4	29
45	Monitoring the <i>t â†' m</i> Martensitic Phase Transformation by Photoluminescence Emission in <scp><scp>Eu</scp></scp> ³⁺ â€Doped Zirconia Powders. Journal of the American Ceramic Society, 2013, 96, 2628-2635.	3.8	40
46	Unexpected optical activity of cerium in Y ₂ O ₃ :Ce ³⁺ , Yb ³⁺ , Er ³⁺ up and down-conversion system. Dalton Transactions, 2013, 42, 16837-16845.	3.3	25
47	Nanoprobes for Biomedical Imaging with Tunable Nearâ€Infrared Optical Properties Obtained via Green Synthesis. Advanced Photonics Research, 0, , 2100260.	3.6	4
48	Luminescence Thermometry for Brain Activity Monitoring: A Perspective. Frontiers in Chemistry, 0, 10, .	3.6	7