Sergey N Krylov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8746248/publications.pdf

Version: 2024-02-01

SEPCEN N KPVION

#	Article	IF	CITATIONS
1	Synthetic, Switchable Enzymes. Journal of Molecular Microbiology and Biotechnology, 2017, 27, 117-127.	1.0	419
2	Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures: A Universal Tool for Development of Aptamers. Journal of the American Chemical Society, 2005, 127, 3165-3171.	6.6	275
3	Non-SELEX Selection of Aptamers. Journal of the American Chemical Society, 2006, 128, 1410-1411.	6.6	225
4	A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy. Oncogene, 2018, 37, 5829-5842.	2.6	222
5	Aptamer-Facilitated Biomarker Discovery (AptaBiD). Journal of the American Chemical Society, 2008, 130, 9137-9143.	6.6	181
6	Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures â^' A Single Experiment Reveals Equilibrium and Kinetic Parameters of Proteinâ^'DNA Interactions. Journal of the American Chemical Society, 2002, 124, 13674-13675.	6.6	178
7	Non-SELEX: selection of aptamers without intermediate amplification of candidate oligonucleotides. Nature Protocols, 2006, 1, 1359-1369.	5.5	152
8	Kinetic Capillary Electrophoresis (KCE):Â A Conceptual Platform for Kinetic Homogeneous Affinity Methods. Journal of the American Chemical Society, 2005, 127, 17104-17110.	6.6	136
9	Affinity Analysis of a Proteinâ^ Aptamer Complex Using Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures. Analytical Chemistry, 2003, 75, 1382-1386.	3.2	135
10	Selection of Smart Aptamers by Equilibrium Capillary Electrophoresis of Equilibrium Mixtures (ECEEM). Journal of the American Chemical Society, 2005, 127, 11224-11225.	6.6	132
11	Selection of Smart Aptamers by Methods of Kinetic Capillary Electrophoresis. Analytical Chemistry, 2006, 78, 3171-3178.	3.2	120
12	Instrumentation for Chemical Cytometry. Analytical Chemistry, 2000, 72, 872-877.	3.2	119
13	Capillary Electrophoresis for the Analysis of Biopolymers. Analytical Chemistry, 2000, 72, 111-128.	3.2	116
14	Kinetic CE: Foundation for homogeneous kinetic affinity methods. Electrophoresis, 2007, 28, 69-88.	1.3	108
15	Exosomal MicroRNAs Are Diagnostic Biomarkers and Can Mediate Cell–Cell Communication in Renal Cell Carcinoma. European Urology Focus, 2016, 2, 210-218.	1.6	108
16	Selection of aptamers by systematic evolution of ligands by exponential enrichment: Addressing the polymerase chain reaction issue. Analytica Chimica Acta, 2006, 564, 91-96.	2.6	101
17	Reversible Photocontrol of DNA Binding by a Designed GCN4-bZIP Proteinâ€. Biochemistry, 2006, 45, 6075-6084.	1.2	94
18	One-Dimensional Protein Analysis of an HT29 Human Colon Adenocarcinoma Cell. Analytical Chemistry, 2000, 72, 318-322.	3.2	92

#	Article	IF	CITATIONS
19	Capillary Electrophoresis for Quantitative Studies of Biomolecular Interactions. Analytical Chemistry, 2015, 87, 157-171.	3.2	91
20	Correlating cell cycle with metabolism in single cells: Combination of image and metabolic cytometry. , 1999, 37, 14-20.		85
21	Tau protein binds single-stranded DNA sequence specifically - the proof obtained in vitro with non-equilibrium capillary electrophoresis of equilibrium mixtures. FEBS Letters, 2005, 579, 1371-1375.	1.3	83
22	miR-590-3p Promotes Ovarian Cancer Growth and Metastasis via a Novel FOXA2–Versican Pathway. Cancer Research, 2018, 78, 4175-4190.	0.4	83
23	AID Associates with Single-Stranded DNA with High Affinity and a Long Complex Half-Life in a Sequence-Independent Manner. Molecular and Cellular Biology, 2007, 27, 20-30.	1.1	81
24	Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures, Mathematical Model. Analytical Chemistry, 2004, 76, 1507-1512.	3.2	79
25	Transverse Diffusion of Laminar Flow Profiles To Produce Capillary Nanoreactors. Analytical Chemistry, 2005, 77, 5925-5929.	3.2	77
26	Cell Cycle-Dependent Protein Fingerprint from a Single Cancer Cell:Â Image Cytometry Coupled with Single-Cell Capillary Sieving Electrophoresis. Analytical Chemistry, 2003, 75, 3495-3501.	3.2	74
27	Non-equilibrium capillary electrophoresis of equilibrium mixtures—appreciation of kinetics in capillary electrophoresis. Analyst, The, 2003, 128, 571-575.	1.7	70
28	Low Expression of miR-126 Is a Prognostic Marker for Metastatic Clear Cell Renal Cell Carcinoma. American Journal of Pathology, 2015, 185, 693-703.	1.9	68
29	Thermochemistry of Proteinâ^'DNA Interaction Studied with Temperature-Controlled Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures. Analytical Chemistry, 2005, 77, 1526-1529.	3.2	67
30	Direct Quantitative Analysis of Multiple miRNAs (DQAMmiR). Angewandte Chemie - International Edition, 2011, 50, 10335-10339.	7.2	65
31	Selection of Smart Small-Molecule Ligands: The Proof of Principle. Analytical Chemistry, 2009, 81, 490-494.	3.2	64
32	Emulsion PCR Significantly Improves Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures-Based Aptamer Selection: Allowing for Efficient and Rapid Selection of Aptamer to Unmodified ABH2 Protein. Analytical Chemistry, 2015, 87, 1411-1419.	3.2	64
33	Using DNA-Binding Proteins as an Analytical Tool. Journal of the American Chemical Society, 2003, 125, 13451-13454.	6.6	62
34	Single-cell analysis using capillary electrophoresis: Influence of surface support properties on cell injection into the capillary. Electrophoresis, 2000, 21, 767-773.	1.3	59
35	Selection of aptamers for a protein target in cell lysate and their application to protein purification. Nucleic Acids Research, 2009, 37, e62-e62.	6.5	56
36	Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures (NECEEM): A Novel Method for Biomolecular Screening, Journal of Biomolecular Screening, 2006, 11, 115-122.	2.6	55

#	Article	IF	CITATIONS
37	Transverse diffusion of laminar flow profiles – a generic method for mixing reactants in capillary microreactor. Journal of Separation Science, 2009, 32, 742-756.	1.3	55
38	miR-210 Is a Prognostic Marker in Clear Cell Renal Cell Carcinoma. Journal of Molecular Diagnostics, 2015, 17, 136-144.	1.2	55
39	Smart Aptamers Facilitate Multi-Probe Affinity Analysis of Proteins with Ultra-Wide Dynamic Range of Measured Concentrations. Journal of the American Chemical Society, 2007, 129, 7260-7261.	6.6	53
40	MECHANISTIC QUANTITATIVE STRUCTURE–ACTIVITY RELATIONSHIP MODEL FOR THE PHOTOINDUCED TOXICITY OF POLYCYCLIC AROMATIC HYDROCARBONS: I. PHYSICAL MODEL BASED ON CHEMICAL KINETICS IN A TWO-COMPARTMENT SYSTEM. Environmental Toxicology and Chemistry, 1997, 16, 2283.	2.2	51
41	Micro <scp>RNA</scp> â€194 is a Marker for Good Prognosis in Clear Cell Renal Cell Carcinoma. Cancer Medicine, 2016, 5, 656-664.	1.3	50
42	Dynamic Combinatorial Mass Spectrometry Leads to Inhibitors of a 2-Oxoglutarate-Dependent Nucleic Acid Demethylase. Journal of Medicinal Chemistry, 2012, 55, 2173-2184.	2.9	49
43	Detection of a Thousand Copies of miRNA without Enrichment or Modification. Analytical Chemistry, 2012, 84, 5470-5474.	3.2	48
44	"Getting the best sensitivity from on-capillary fluorescence detection in capillary electrophoresis―– A tutorial. Analytica Chimica Acta, 2016, 935, 58-81.	2.6	47
45	Plugâ`'Plug Kinetic Capillary Electrophoresis:Â Method for Direct Determination of Rate Constants of Complex Formation and Dissociation. Analytical Chemistry, 2006, 78, 4803-4810.	3.2	46
46	Label-Free Solution-Based Kinetic Study of Aptamer–Small Molecule Interactions by Kinetic Capillary Electrophoresis with UV Detection Revealing How Kinetics Control Equilibrium. Analytical Chemistry, 2011, 83, 8387-8390.	3.2	46
47	MECHANISTIC QUANTITATIVE STRUCTURE–ACTIVITY RELATIONSHIP MODEL FOR THE PHOTOINDUCED TOXICITY OF POLYCYCLIC AROMATIC HYDROCARBONS: II. AN EMPIRICAL MODEL FOR THE TOXICITY OF 16 POLYCYCLIC AROMATIC HYDROCARBONS TO THE DUCKWEED LEMNA GIBBA L. G-3. Environmental Toxicology and Chemistry, 1997, 16, 2296.	2.2	45
48	Use of Capillary Electrophoresis and Endogenous Fluorescent Substrate To Monitor Intracellular Activation of Protein Kinase A. Analytical Chemistry, 2003, 75, 3720-3724.	3.2	43
49	Idealâ€Filter Capillary Electrophoresis (IFCE) Facilitates the Oneâ€&tep Selection of Aptamers. Angewandte Chemie - International Edition, 2019, 58, 2739-2743.	7.2	43
50	Using Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures for the Determination of Temperature in Capillary Electrophoresis. Analytical Chemistry, 2004, 76, 7114-7117.	3.2	40
51	Universal Drag Tag for Direct Quantitative Analysis of Multiple MicroRNAs. Analytical Chemistry, 2013, 85, 6518-6523.	3.2	40
52	"Inject-Mix-React-Separate-and-Quantitate―(IMReSQ) Method for Screening Enzyme Inhibitors. Journal of the American Chemical Society, 2008, 130, 11862-11863.	6.6	38
53	Universal Method for Determining Electrolyte Temperatures in Capillary Electrophoresis. Analytical Chemistry, 2011, 83, 1808-1814.	3.2	38
54	Sweeping Capillary Electrophoresis:  A Non-Stopped-Flow Method for Measuring Bimolecular Rate Constant of Complex Formation between Protein and DNA. Journal of the American Chemical Society, 2004, 126, 7166-7167.	6.6	37

#	Article	IF	CITATIONS
55	Methyl-Î ² -cyclodextrin modified micellar electrokinetic capillary chromatography with laser-induced fluorescence for separation and detection of phospholipids. Journal of Chromatography A, 2000, 894, 129-134.	1.8	35
56	Single-cell analysis avoids sample processing bias. Biomedical Applications, 2000, 741, 31-35.	1.7	35
57	Mathematical Model for Mixing Reactants in a Capillary Microreactor by Transverse Diffusion of Laminar Flow Profiles. Analytical Chemistry, 2008, 80, 7482-7486.	3.2	35
58	The Inject-Mix-React-Separate-and-Quantitate (IMReSQ) approach to studying reactions in capillaries. TrAC - Trends in Analytical Chemistry, 2009, 28, 987-1010.	5.8	33
59	Using Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures (NECEEM) for Simultaneous Determination of Concentration and Equilibrium Constant. Analytical Chemistry, 2015, 87, 3099-3106.	3.2	33
60	Highly-Sensitive Amplification-Free Analysis of Multiple miRNAs by Capillary Electrophoresis. Analytical Chemistry, 2015, 87, 1404-1410.	3.2	32
61	Pressure-Based Approach for the Analysis of Protein Adsorption in Capillary Electrophoresis. Analytical Chemistry, 2012, 84, 453-458.	3.2	31
62	Predicting Electrophoretic Mobility of Protein–Ligand Complexes for Ligands from DNA-Encoded Libraries of Small Molecules. Analytical Chemistry, 2016, 88, 5498-5506.	3.2	30
63	Chemical cytometry for monitoring metabolism of a Ras-mimicking substrate in single cells. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2005, 63A, 41-47.	1.1	29
64	miR-10b is a prognostic marker in clear cell renal cell carcinoma. Journal of Clinical Pathology, 2017, 70, 854-859.	1.0	29
65	miR-620 promotes tumor radioresistance by targeting 15-hydroxyprostaglandin dehydrogenase (HPGD). Oncotarget, 2015, 6, 22439-22451.	0.8	29
66	Metabolic Cytometry: Monitoring Oligosaccharide Biosynthesis in Single Cells by Capillary Electrophoresis. Analytical Biochemistry, 2000, 283, 133-135.	1.1	28
67	MASKE: Macroscopic Approach to Studying Kinetics at Equilibrium. Journal of the American Chemical Society, 2010, 132, 7062-7068.	6.6	28
68	Inhibition of Dexamethasone-induced Fatty Liver Development by Reducing miR-17-5p Levels. Molecular Therapy, 2015, 23, 1222-1233.	3.7	28
69	Improvement of LOD in Fluorescence Detection with Spectrally Nonuniform Background by Optimization of Emission Filtering. Analytical Chemistry, 2017, 89, 11122-11128.	3.2	28
70	Measuring the activity of farnesyltransferase by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis, 2002, 23, 3398-3403.	1.3	27
71	Extracting Kinetics from Affinity Capillary Electrophoresis (ACE) Data: A New Blade for the Old Tool. Analytical Chemistry, 2014, 86, 1298-1305.	3.2	27
72	Identification of Base Pairs in Single-Nucleotide Polymorphisms by MutS Protein-Mediated Capillary Electrophoresis. Analytical Chemistry, 2006, 78, 2035-2038.	3.2	26

#	Article	IF	CITATIONS
73	Temperature Difference between the Cooled and the Noncooled Parts of an Electrolyte in Capillary Electrophoresis. Analytical Chemistry, 2010, 82, 8692-8695.	3.2	26
74	DNA aptamers for as analytical tools for the quantitative analysis of DNA-dealkylating enzymes. Analytical Biochemistry, 2011, 414, 261-265.	1.1	26
75	Direct miRNA-hybridization assays and their potential in diagnostics. TrAC - Trends in Analytical Chemistry, 2013, 44, 121-130.	5.8	26
76	Advances in steady-state continuous-flow purification by small-scale free-flow electrophoresis. TrAC - Trends in Analytical Chemistry, 2015, 72, 68-79.	5.8	26
77	Detailed Model of the Peroxidase-Catalyzed Oxidation of Indole-3-Acetic Acid at Neutral pH. The Journal of Physical Chemistry, 1996, 100, 913-920.	2.9	25
78	Dynamic Kinetic Capillary Isoelectric Focusing:Â A Powerful Tool for Studying Proteinâ^'DNA Interactions. Analytical Chemistry, 2007, 79, 1097-1100.	3.2	25
79	A semipermanent coating for preventing protein adsorption at physiological p <scp>H</scp> in kinetic capillary electrophoresis. Electrophoresis, 2012, 33, 2584-2590.	1.3	25
80	Selection of surfactants for cell lysis in chemical cytometry to study protein-DNA interactions. Electrophoresis, 2006, 27, 1489-1494.	1.3	24
81	Heterogeneity of protein labeling with a fluorogenic reagent, 3-(2-furoyl)quinoline-2-carboxaldehyde. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 780, 283-287.	1.2	23
82	Reciprocal regulation of miRNAs and piRNAs in embryonic development. Cell Death and Differentiation, 2016, 23, 1458-1470.	5.0	23
83	Kinetic capillary electrophoresis-based affinity screening of aptamer clones. Analytica Chimica Acta, 2009, 631, 102-107.	2.6	22
84	Noncooled Capillary Inlet: A Source of Systematic Errors in Capillary-Electrophoresis-Based Affinity Analyses. Analytical Chemistry, 2010, 82, 8637-8641.	3.2	22
85	Separation-Based Approach to Study Dissociation Kinetics of Noncovalent DNA–Multiple Protein Complexes. Journal of the American Chemical Society, 2011, 133, 12486-12492.	6.6	22
86	Single-stranded DNA-binding protein facilitates gel-free analysis of polymerase chain reaction products in capillary electrophoresis. Journal of Chromatography A, 2004, 1051, 171-175.	1.8	21
87	Direct Analysis of Enzyme-Catalyzed DNA Demethylation. Analytical Chemistry, 2009, 81, 5871-5875.	3.2	21
88	Method for Determination of Peak Areas in Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures. Analytical Chemistry, 2011, 83, 8617-8622.	3.2	21
89	Kinetic Capillary Electrophoresis with Massâ€Spectrometry Detection (KCEâ€MS) Facilitates Labelâ€Free Solutionâ€Based Kinetic Analysis of Protein–Small Molecule Binding. ChemBioChem, 2011, 12, 2551-2554.	1.3	21
90	Accurate MicroRNA Analysis in Crude Cell Lysate by Capillary Electrophoresis-Based Hybridization Assay in Comparison with Quantitative Reverse Transcription-Polymerase Chain Reaction. Analytical Chemistry, 2017, 89, 4743-4748.	3.2	21

#	Article	IF	CITATIONS
91	Peroxidase-catalyzed co-oxidation of indole-3-acetic acid and xanthene dyes in the absence of hydrogen peroxide. FEBS Letters, 1993, 324, 6-8.	1.3	20
92	Evidence for a free radical chain mechanism in the reaction between peroxidase and indole-3-acetic acid at neutral pH. Biophysical Chemistry, 1996, 58, 325-334.	1.5	20
93	Kinetic Size-Exclusion Chromatography with Mass Spectrometry Detection: An Approach for Solution-Based Label-Free Kinetic Analysis of Protein–Small Molecule Interactions. Analytical Chemistry, 2014, 86, 10016-10020.	3.2	20
94	Metabolic Suppression of a Drugâ€Resistant Subpopulation in Cancer Spheroid Cells. Journal of Cellular Biochemistry, 2016, 117, 59-65.	1.2	20
95	Analysis of DNA in Phosphate Buffered Saline Using Kinetic Capillary Electrophoresis. Analytical Chemistry, 2016, 88, 7421-7428.	3.2	20
96	Aptamer facilitated purification of functional proteins. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1073, 201-206.	1.2	20
97	Steady‣tate Continuousâ€Flow Purification by Electrophoresis. Angewandte Chemie - International Edition, 2013, 52, 7256-7260.	7.2	19
98	Prediction of Protein–DNA Complex Mobility in Gel-Free Capillary Electrophoresis. Analytical Chemistry, 2015, 87, 2474-2479.	3.2	19
99	Achieving Single-Nucleotide Specificity in Direct Quantitative Analysis of Multiple MicroRNAs (DQAMmiR). Analytical Chemistry, 2016, 88, 2472-2477.	3.2	19
100	Protein Labeling Enhances Aptamer Selection by Methods of Kinetic Capillary Electrophoresis. Analytical Chemistry, 2011, 83, 6330-6335.	3.2	18
101	Calibration-Free Quantitative Analysis of mRNA. Analytical Chemistry, 2005, 77, 8027-8030.	3.2	17
102	Predicting efficiency of NECEEMâ€based partitioning of protein binders from nonbinders in DNAâ€encoded libraries. Electrophoresis, 2018, 39, 2991-2996.	1.3	17
103	Asymmetry between Sister Cells in a Cancer Cell Line Revealed by Chemical Cytometry. Analytical Chemistry, 2004, 76, 3864-3866.	3.2	16
104	Correlation between Multi-Drug Resistance-Associated Membrane Transport in Clonal Cancer Cells and the Cell Cycle Phase. PLoS ONE, 2012, 7, e41368.	1.1	16
105	Simplified universal method for determining electrolyte temperatures in a capillary electrophoresis instrument with forced-air cooling. Electrophoresis, 2012, 33, 1079-1085.	1.3	16
106	Non-uniform Velocity of Homogeneous DNA in a Uniform Electric Field: Consequence of Electric-Field-Induced Slow Dissociation of Highly Stable DNA–Counterion Complexes. Journal of the American Chemical Society, 2013, 135, 8041-8046.	6.6	16
107	Diffusion as a Tool of Measuring Temperature inside a Capillary. Analytical Chemistry, 2008, 80, 6752-6757.	3.2	15
108	Electric Field Destabilizes Noncovalent Proteinâ^'DNA Complexes. Journal of the American Chemical Society, 2010, 132, 13639-13641.	6.6	15

7

#	Article	IF	CITATIONS
109	DNA Adsorption to the Reservoir Walls Causing Irreproducibility in Studies of Protein–DNA Interactions by Methods of Kinetic Capillary Electrophoresis. Analytical Chemistry, 2011, 83, 8041-8045.	3.2	15
110	Inhibition of enzymatic indole-3-acetic acid oxidation by phenols. Phytochemistry, 1994, 36, 263-267.	1.4	14
111	Cell lysis inside the capillary facilitated by transverse diffusion of laminar flow profiles (TDLFP). Analytical and Bioanalytical Chemistry, 2006, 387, 91-96.	1.9	14
112	Selection of aptamers for a non-DNA binding protein in the context of cell lysate. Analytica Chimica Acta, 2010, 681, 92-97.	2.6	14
113	Slow-Dissociation and Slow-Recombination Assumptions in Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures. Analytical Chemistry, 2011, 83, 7582-7585.	3.2	14
114	Slow-Equilibration Approximation in Macroscopic Approach to Studying Kinetics at Equilibrium. Analytical Chemistry, 2011, 83, 1381-1387.	3.2	14
115	Volatile Kinetic Capillary Electrophoresis for Studies of Protein–Small Molecule Interactions. Analytical Chemistry, 2012, 84, 6944-6947.	3.2	14
116	Milliâ€free flow electrophoresis: I. Fast prototyping of mFFE devices. Journal of Separation Science, 2011, 34, 556-564.	1.3	13
117	Peak-Shape Correction to Symmetry for Pressure-Driven Sample Injection in Capillary Electrophoresis. Analytical Chemistry, 2012, 84, 149-154.	3.2	13
118	Mechanistic Studies on the Application of DNA Aptamers as Inhibitors of 2-Oxoglutarate-Dependent Oxygenases. Journal of Medicinal Chemistry, 2012, 55, 3546-3552.	2.9	13
119	Non-Orthogonal-to-the-Flow Electric Field Improves Resolution in the Orthogonal Direction: Hidden Reserves for Combining Synthesis and Purification in Continuous Flow. Analytical Chemistry, 2010, 82, 1183-1185.	3.2	12
120	Single-Cell-Kinetics Approach to Compare Multidrug Resistance-Associated Membrane Transport in Subpopulations of Cells. Analytical Chemistry, 2011, 83, 6132-6134.	3.2	12
121	Image processing and analysis system for development and use of free flow electrophoresis chips. Lab on A Chip, 2017, 17, 256-266.	3.1	12
122	Stable DNA Aggregation by Removal of Counterions. Analytical Chemistry, 2013, 85, 10004-10007.	3.2	11
123	Ultrasensitive on-column laser-induced fluorescence in capillary electrophoresis using multiparameter confocal detection. Analyst, The, 2012, 137, 5538.	1.7	10
124	Improvements to Direct Quantitative Analysis of Multiple MicroRNAs Facilitating Faster Analysis. Analytical Chemistry, 2013, 85, 10062-10066.	3.2	10
125	Kinetics of MDR Transport in Tumor-Initiating Cells. PLoS ONE, 2013, 8, e79222.	1.1	10
126	Systematic Approach to Optimization of Experimental Conditions in Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures. Analytical Chemistry, 2016, 88, 9300-9308.	3.2	10

#	Article	IF	CITATIONS
127	Spherical-Shape Assumption for Protein–Aptamer Complexes Facilitates Prediction of Their Electrophoretic Mobility. Analytical Chemistry, 2019, 91, 12680-12687.	3.2	10
128	Idealâ€Filter Capillary Electrophoresis (IFCE) Facilitates the Oneâ€Step Selection of Aptamers. Angewandte Chemie, 2019, 131, 2765-2769.	1.6	10
129	Determination of the Equilibrium Constant and Rate Constant of Protein–Oligonucleotide Complex Dissociation under the Conditions of Ideal-Filter Capillary Electrophoresis. Analytical Chemistry, 2019, 91, 8532-8539.	3.2	10
130	Monitoring the three enzymatic activities involved in posttranslational modifications of Ras proteins. Analytica Chimica Acta, 2004, 521, 1-7.	2.6	9
131	Heat-Associated Field Distortion in Electro-Migration Techniques. Analytical Chemistry, 2010, 82, 8398-8401.	3.2	9
132	Predictive measure of quality of micromixing. Chemical Communications, 2011, 47, 7767.	2.2	9
133	Theoretical estimation of drag tag lengths for direct quantitative analysis of multiple miRNAs (DQAMmiR). Analyst, The, 2013, 138, 553-558.	1.7	9
134	Pre-equilibration kinetic size-exclusion chromatography with mass spectrometry detection (peKSEC-MS) for label-free solution-based kinetic analysis of protein–small molecule interactions. Analyst, The, 2015, 140, 990-994.	1.7	9
135	Slow-Equilibration Approximation in Kinetic Size Exclusion Chromatography. Analytical Chemistry, 2016, 88, 4063-4070.	3.2	9
136	Direct Quantitative Analysis of Multiple microRNAs (DQAMmiR) with Peptide Nucleic Acid Hybridization Probes. Analytical Chemistry, 2018, 90, 14610-14615.	3.2	9
137	Idealâ€filter capillary electrophoresis: A highly efficient partitioning method for selection of protein binders from oligonucleotide libraries. Electrophoresis, 2019, 40, 2553-2564.	1.3	9
138	Transient Incomplete Separation Facilitates Finding Accurate Equilibrium Dissociation Constant of Protein–Small Molecule Complex. Angewandte Chemie - International Edition, 2019, 58, 6635-6639.	7.2	9
139	Necessity and Challenges of Sample Preconcentration in Analysis of Multiple MicroRNAs by Capillary Electrophoresis. Analytical Chemistry, 2020, 92, 14251-14258.	3.2	9
140	How to Develop and Prove High-Efficiency Selection of Ligands from Oligonucleotide Libraries: A Universal Framework for Aptamers and DNA-Encoded Small-Molecule Ligands. Analytical Chemistry, 2021, 93, 5343-5354.	3.2	9
141	Non-orthogonal micro-free flow electrophoresis: From theory to design concept. Analytica Chimica Acta, 2010, 674, 102-109.	2.6	8
142	Making DNA Hybridization Assays in Capillary Electrophoresis Quantitative. Analytical Chemistry, 2010, 82, 4428-4433.	3.2	8
143	Quantitative Characterization of Micromixing Based on Uniformity and Overlap. Angewandte Chemie - International Edition, 2011, 50, 11999-12002.	7.2	8
144	Theoretical Modeling of Masking DNA Application in Aptamer-Facilitated Biomarker Discovery. Analytical Chemistry, 2013, 85, 4157-4164.	3.2	8

#	Article	IF	CITATIONS
145	Quantitative Characterization of Molecular-Stream Separation. Analytical Chemistry, 2018, 90, 9504-9509.	3.2	8
146	Cytometry of Reaction Rate Constant: Measuring Reaction Rate Constant in Individual Cells To Facilitate Robust and Accurate Analysis of Cell-Population Heterogeneity. Analytical Chemistry, 2019, 91, 4186-4194.	3.2	8
147	Accelerating Effect of Umbelliferone on Peroxidase-Catalyzed Oxidation of Indole-3-acetic Acid at Neutral pH. The Journal of Physical Chemistry, 1996, 100, 19719-19727.	2.9	7
148	Minimizing adsorption of histidine-tagged proteins for the study of protein–deoxyribonucleic acid interactions by kinetic capillary electrophoresis. Journal of Chromatography A, 2013, 1322, 90-96.	1.8	7
149	One-Dimensional Approach to Study Kinetics of Reversible Binding of Protein on Capillary Walls. Analytical Chemistry, 2015, 87, 1219-1225.	3.2	7
150	Hyphenation of Production-Scale Free-Flow Electrophoresis to Electrospray Ionization Mass Spectrometry Using a Highly Conductive Background Electrolyte. Analytical Chemistry, 2016, 88, 8415-8420.	3.2	7
151	Preservation of the 3D Phenotype Upon Dispersal of Cultured Cell Spheroids Into Monolayer Cultures. Journal of Cellular Biochemistry, 2017, 118, 154-162.	1.2	7
152	Non-aqueous continuous-flow electrophoresis (NACFE): potential separation complement for continuous-flow organic synthesis. Lab on A Chip, 2019, 19, 2156-2160.	3.1	7
153	Multiâ€ʿdrugâ€ʿresistance efflux in cisplatinâ€ʿnaive and cisplatinâ€ʿexposed A2780 ovarian cancer cells responds differently to cell culture dimensionality. Molecular and Clinical Oncology, 2021, 15, 161.	0.4	7
154	Quantitative Characterization of Partitioning in Selection of DNA Aptamers for Protein Targets by Capillary Electrophoresis. Analytical Chemistry, 2022, 94, 2578-2588.	3.2	7
155	Monitoring viral DNA release with capillary electrophoresis. Analyst, The, 2004, 129, 1234.	1.7	6
156	Singleâ€Cell Analysis by Chemical Cytometry Combined with Fluorescence Microscopy. Instrumentation Science and Technology, 2004, 32, 31-41.	0.9	6
157	Two-peak approximation in kinetic capillary electrophoresis. Analyst, The, 2012, 137, 1649.	1.7	6
158	Single-Cell-Kinetics Approach to Discover Functionally Distinct Subpopulations within Phenotypically Uniform Populations of Cells. Analytical Chemistry, 2013, 85, 2578-2581.	3.2	6
159	Simultaneous Analysis of a Non-Lipidated Protein and Its Lipidated Counterpart: Enabling Quantitative Investigation of Protein Lipidation's Impact on Cellular Regulation. Analytical Chemistry, 2017, 89, 13502-13507.	3.2	6
160	Analytical Challenges in Development of Chemoresistance Predictors for Precision Oncology. Analytical Chemistry, 2020, 92, 12101-12110.	3.2	6
161	Single-stranded DNA-binding protein facilitates gel-free analysis of polymerase chain reaction products in capillary electrophoresis. Journal of Chromatography A, 2004, 1051, 171-175.	1.8	6
162	Spheroid-Based Approach to Assess the Tissue Relevance of Analysis of Dispersed-Settled Tissue Cells by Cytometry of the Reaction Rate Constant. Analytical Chemistry, 2020, 92, 9348-9355.	3.2	5

#	Article	IF	CITATIONS
163	Detailed Mechanism of Phenol-Inhibited Peroxidase-Catalyzed Oxidation of Indole-3-Acetic Acid at Neutral pH. Photochemistry and Photobiology, 1996, 63, 735-741.	1.3	4
164	High-precision quantitation of a tuberculosis vaccine antigen with capillary-gel electrophoresis using an injection standard. Talanta, 2017, 175, 273-279.	2.9	4
165	Assessing Accuracy of an Analytical Method <i>In Silico</i> : Application to "Accurate Constant via Transient Incomplete Separation―(ACTIS). Analytical Chemistry, 2020, 92, 11973-11980.	3.2	4
166	Template Instrumentation for "Accurate Constant via Transient Incomplete Separation― Analytical Chemistry, 2021, 93, 11654-11659.	3.2	4
167	Visualization of Streams of Small Organic Molecules in Continuous-Flow Electrophoresis. Analytical Chemistry, 2020, 92, 2907-2910.	3.2	4
168	Optically Pumped Chemiluminescence of Indole-3-Acetic Acid. Photochemistry and Photobiology, 1996, 63, 621-627.	1.3	3
169	Time-resolved detection of luminescence for electrophoretic methods. TrAC - Trends in Analytical Chemistry, 2012, 33, 23-34.	5.8	3
170	Reducing pH Gradients in Free-Flow Electrophoresis. Analytical Chemistry, 2014, 86, 5656-5660.	3.2	3
171	Single-stranded DNA-binding protein facilitates gel-free analysis of polymerase chain reaction products in capillary electrophoresis. Journal of Chromatography A, 2004, 1051, 171-5.	1.8	3
172	Computer simulation of damped oscillations during peroxidase-catalyzed oxidation of indole-3-acetic acid. Biophysical Chemistry, 1998, 72, 285-295.	1.5	2
173	Slow-equilibration approximation in studying kinetics of protein adsorption on capillary walls. Analyst, The, 2015, 140, 2797-2803.	1.7	2
174	Transient Incomplete Separation Facilitates Finding Accurate Equilibrium Dissociation Constant of Protein–Small Molecule Complex. Angewandte Chemie, 2019, 131, 6707-6711.	1.6	2
175	Aptamer-facilitated Protein Isolation from Cells. Protocol Exchange, 0, , .	0.3	2
176	Sequential-dissociation kinetics of non-covalent complexes of DNA with multiple proteins in separation-based approach: General theory and its application. Analytica Chimica Acta, 2012, 724, 111-118.	2.6	1
177	A fast stable discretization of the Constant–Convection–Diffusion–Reaction equations of Kinetic Capillary Electrophoresis (KCE). Applied Numerical Mathematics, 2017, 122, 82-91.	1.2	1
178	Empirical predictor of conditions that support idealâ€filter capillary electrophoresis. Electrophoresis, 2020, 41, 1225-1229.	1.3	1
179	Circular Geometry in Molecular Stream Separation to Facilitate Nonorthogonal Field-to-Flow Orientation. Analytical Chemistry, 2022, 94, 9519-9524.	3.2	1
180	Kinetic Capillary Electrophoresis for Selection, Characterization, and Analytical Utilization of		0

Aptamers. , 0, , 181-212.

#	Article	IF	CITATIONS
181	Unexpected Electrophoretic Behavior of Complexes between Rod-like Virions and Bivalent Antibodies. Analytical Chemistry, 2016, 88, 11908-11912.	3.2	0
182	Topino: A Graphical Tool for Quantitative Assessment of Molecular Stream Separations. Analytical Chemistry, 2021, 93, 9980-9985.	3.2	0