Hergen Spits

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8746059/publications.pdf Version: 2024-02-01

HEDGEN SDITS

#	Article	IF	CITATIONS
1	Neuropilin-1 flags lung-resident type 2 innate lymphoid cells. Nature Immunology, 2022, 23, 151-152.	14.5	1
2	Altered Frequencies and Functions of Innate Lymphoid Cells in Melanoma Patients Are Modulated by Immune Checkpoints Inhibitors. Frontiers in Immunology, 2022, 13, 811131.	4.8	6
3	Heterogeneity of type 2 innate lymphoid cells. Nature Reviews Immunology, 2022, 22, 701-712.	22.7	46
4	CD45RA ⁺ CD62L ^{â^'} ILCs in human tissues represent a quiescent local reservoir for the generation of differentiated ILCs. Science Immunology, 2022, 7, eabj8301.	11.9	14
5	The Road from Mouse to Human ILCs: A Perspective of Understanding the Roles of ILCs in Disease. Advances in Experimental Medicine and Biology, 2022, 1365, 161-166.	1.6	1
6	Melanoma cells can be eliminated by sialylated CD43 × CD3 bispecific T cell engager formats in vitro and in vivo. Cancer Immunology, Immunotherapy, 2021, 70, 1569-1581.	4.2	7
7	Identification of human cytotoxic ILC3s. European Journal of Immunology, 2021, 51, 811-823.	2.9	23
8	Interleukinâ€33 improves local immunity during Gramâ€negative pneumonia by a combined effect on neutrophils and inflammatory monocytes. Journal of Pathology, 2021, 253, 374-383.	4.5	10
9	Innate lymphoid cells: from helper to killer. Current Opinion in Immunology, 2021, 68, 28-33.	5.5	40
10	Steroid-resistant human inflammatory ILC2s are marked by CD45RO and elevated in type 2 respiratory diseases. Science Immunology, 2021, 6, .	11.9	65
11	Induction of IL-10-producing type 2 innate lymphoid cells by allergen immunotherapy is associated with clinical response. Immunity, 2021, 54, 291-307.e7.	14.3	134
12	Innate lymphoid cells: The missing part of a puzzle in food allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2002-2016.	5.7	18
13	Legends of allergy and immunology: Jan E. de Vries. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2924-2926.	5.7	0
14	Characterization of human FDCs reveals regulation of T cells and antigen presentation to B cells. Journal of Experimental Medicine, 2021, 218, .	8.5	30
15	CD127+ CD94+ innate lymphoid cells expressing granulysin and perforin are expanded in patients with Crohn's disease. Nature Communications, 2021, 12, 5841.	12.8	22
16	Tumour-reactive B cells and antibody responses after allogeneic haematopoietic cell transplantation. Immuno-Oncology Technology, 2020, 7, 15-22.	0.3	3
17	Persistently activated, proliferative memory autoreactive B cells promote inflammation in rheumatoid arthritis. Science Translational Medicine, 2020, 12, .	12.4	53
18	Tumor infiltrating lymphocytes (TIL) therapy in metastatic melanoma: boosting of neoantigen-specific T cell reactivity and long-term follow-up. , 2020, 8, e000848.		79

#	Article	IF	CITATIONS
19	A novel proangiogenic B cell subset is increased in cancer and chronic inflammation. Science Advances, 2020, 6, eaaz3559.	10.3	36
20	Plasticity of innate lymphoid cell subsets. Nature Reviews Immunology, 2020, 20, 552-565.	22.7	203
21	Cytokines regulate the antigen-presenting characteristics of human circulating and tissue-resident intestinal ILCs. Nature Communications, 2020, 11, 2049.	12.8	41
22	Preparation of bispecific antibody-protein adducts by site-specific chemo-enzymatic conjugation. Methods, 2019, 154, 93-101.	3.8	17
23	c-Kit-positive ILC2s exhibit an ILC3-like signature that may contribute to IL-17-mediated pathologies. Nature Immunology, 2019, 20, 992-1003.	14.5	142
24	APRIL Induces a Novel Subset of IgA+ Regulatory B Cells That Suppress Inflammation via Expression of IL-10 and PD-L1. Frontiers in Immunology, 2019, 10, 1368.	4.8	63
25	Modeling human lung infections in mice. Nature Biotechnology, 2019, 37, 1129-1130.	17.5	4
26	KLRG1 and NKp46 discriminate subpopulations of human CD117+CRTH2â^' ILCs biased toward ILC2 or ILC3. Journal of Experimental Medicine, 2019, 216, 1762-1776.	8.5	93
27	A Chemo-enzymatically Linked Bispecific Antibody Retargets T Cells to a Sialylated Epitope on CD43 in Acute Myeloid Leukemia. Cancer Research, 2019, 79, 3372-3382.	0.9	13
28	IL-1β, IL-23, and TGF-β drive plasticity of human ILC2s towards IL-17-producing ILCs in nasal inflammation. Nature Communications, 2019, 10, 2162.	12.8	95
29	BOB.1 controls memory B-cell fate in the germinal center reaction. Journal of Autoimmunity, 2019, 101, 131-144.	6.5	11
30	Accelerated thymopoiesis and improved Tâ€cell responses in HLAâ€A2/â€DR2 transgenic BRGSâ€based human immune system mice. European Journal of Immunology, 2019, 49, 954-965.	2.9	24
31	Cross-genotype AR3-specific neutralizing antibodies confer long-term protection in injecting drug users after HCV clearance. Journal of Hepatology, 2019, 71, 14-24.	3.7	27
32	Human ectoenzyme-expressing ILC3: immunosuppressive innate cells that are depleted in graft-versus-host disease. Blood Advances, 2019, 3, 3650-3660.	5.2	28
33	Expansion of Interleukinâ€22– and Granulocyte–Macrophage Colonyâ€Stimulating Factor–Expressing, but Not Interleukinâ€17A–Expressing, Group 3 Innate Lymphoid Cells in the Inflamed Joints of Patients With Spondyloarthritis. Arthritis and Rheumatology, 2019, 71, 392-402.	5.6	30
34	Generation and Characterization of Anti–Citrullinated Protein Antibody–Producing B Cell Clones From Rheumatoid Arthritis Patients. Arthritis and Rheumatology, 2019, 71, 340-350.	5.6	22
35	AML-specific cytotoxic antibodies in patients with durable graft-versus-leukemia responses. Blood, 2018, 131, 131-143.	1.4	18
36	Multiplex flow cytometry-based assay to study the breadth of antibody responses against E1E2 glycoproteins of hepatitis C virus. Journal of Immunological Methods, 2018, 454, 15-26.	1.4	3

#	Article	IF	CITATIONS
37	Innate Lymphoid Cells (ILCs): Cytokine Hubs Regulating Immunity and Tissue Homeostasis. Cold Spring Harbor Perspectives in Biology, 2018, 10, a030304.	5.5	34
38	New insights into the function, development, and plasticity of type 2 innate lymphoid cells. Immunological Reviews, 2018, 286, 74-85.	6.0	67
39	Isolation of Human Innate Lymphoid Cells. Current Protocols in Immunology, 2018, 122, e55.	3.6	21
40	Innate Lymphoid Cells: 10 Years On. Cell, 2018, 174, 1054-1066.	28.9	1,467
41	Maturing Human CD127+ CCR7+ PDL1+ Dendritic Cells Express AIRE in the Absence of Tissue Restricted Antigens. Frontiers in Immunology, 2018, 9, 2902.	4.8	38
42	The NOTCH1/CD44 axis drives pathogenesis in a T cell acute lymphoblastic leukemia model. Journal of Clinical Investigation, 2018, 128, 2802-2818.	8.2	48
43	SAT0021â€Innate lymphoid cells are not a main source of il-17a in the inflamed spondyloarthritis joint. , 2018, , .		0
44	OPO2O5â€April induces a novel subset of iga+ regulatory b cells that suppress inflammation through the expression of il-10 and pd-l1. , 2018, , .		0
45	Innate lymphoid cells in autoimmunity: emerging regulators in rheumatic diseases. Nature Reviews Rheumatology, 2017, 13, 164-173.	8.0	69
46	Neuropilin-1 Is Expressed on Lymphoid Tissue Residing LTi-like Group 3 Innate Lymphoid Cells and Associated with Ectopic Lymphoid Aggregates. Cell Reports, 2017, 18, 1761-1773.	6.4	98
47	Inducible, Site-Specific Protein Labeling by Tyrosine Oxidation–Strain-Promoted (4 + 2) Cycloaddition. Bioconjugate Chemistry, 2017, 28, 1189-1193.	3.6	71
48	A Novel Human Effector B cell Subset. Journal of Allergy and Clinical Immunology, 2017, 139, AB14.	2.9	0
49	Human ILC1: To Be or Not to Be. Immunity, 2017, 46, 756-757.	14.3	46
50	The Transcriptional Coactivator Bob1 Is Associated With Pathologic B Cell Responses in Autoimmune Tissue Inflammation. Arthritis and Rheumatology, 2017, 69, 750-762.	5.6	9
51	Patient-derived antibody recognizes a unique CD43 epitope expressed on all AML and has antileukemia activity in mice. Blood Advances, 2017, 1, 1551-1564.	5.2	21
52	Human CD5+ Innate Lymphoid Cells Are Functionally Immature and Their Development from CD34+ Progenitor Cells Is Regulated by Id2. Frontiers in Immunology, 2017, 8, 1047.	4.8	41
53	Hepatitis C virus Broadly Neutralizing Monoclonal Antibodies Isolated 25 Years after Spontaneous Clearance. PLoS ONE, 2016, 11, e0165047.	2.5	50
54	A novel Flt3â€deficient HIS mouse model with selective enhancement of human DC development. European Journal of Immunology, 2016, 46, 1291-1299.	2.9	57

#	Article	IF	CITATIONS
55	AML relapse after rituximab treatment for GvHD: crucial role for B cells in GvL responses. Bone Marrow Transplantation, 2016, 51, 1245-1248.	2.4	7
56	IL-1β, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nature Immunology, 2016, 17, 636-645.	14.5	397
57	Human innate lymphoid cells. Journal of Allergy and Clinical Immunology, 2016, 138, 1265-1276.	2.9	183
58	Stable longâ€ŧerm cultures of selfâ€renewing B cells and their applications. Immunological Reviews, 2016, 270, 65-77.	6.0	44
59	A new edge to immune surveillance by the neural system. Cell Research, 2016, 26, 1178-1179.	12.0	2
60	Evidence of innate lymphoid cell redundancy in humans. Nature Immunology, 2016, 17, 1291-1299.	14.5	260
61	NK cells and type 1 innate lymphoid cells: partners in host defense. Nature Immunology, 2016, 17, 758-764.	14.5	413
62	Neoantigen landscape dynamics during human melanoma–T cell interactions. Nature, 2016, 536, 91-95.	27.8	387
63	The modified FACS calcein AM retention assay: A high throughput flow cytometer based method to measure cytotoxicity. Journal of Immunological Methods, 2016, 434, 16-23.	1.4	34
64	Innate lymphoid cells in inflammatory bowel diseases. Immunology Letters, 2016, 172, 124-131.	2.5	58
65	Identification and characterisation of citrullinated antigen-specific B cells in peripheral blood of patients with rheumatoid arthritis. Annals of the Rheumatic Diseases, 2016, 75, 1170-1176.	0.9	72
66	AB0049â€Human Type 1 Innate Lymphoid Cells Accumulate in the Inflamed Synovium in Spondyloarthritis. Annals of the Rheumatic Diseases, 2015, 74, 906.2-906.	0.9	5
67	TOX sets the stage for innate lymphoid cells. Nature Immunology, 2015, 16, 594-595.	14.5	5
68	L-type amino-acid transporter 1 (LAT1): a therapeutic target supporting growth and survival of T-cell lymphoblastic lymphoma/T-cell acute lymphoblastic leukemia. Leukemia, 2015, 29, 1253-1266.	7.2	118
69	The biology of innate lymphoid cells. Nature, 2015, 517, 293-301.	27.8	1,349
70	Interleukin-12 and -23 Control Plasticity of CD127+ Group 1 and Group 3 Innate Lymphoid Cells in the Intestinal Lamina Propria. Immunity, 2015, 43, 146-160.	14.3	538
71	Effective Inhibition of Bone Morphogenetic Protein Function by Highly Specific Llama-Derived Antibodies. Molecular Cancer Therapeutics, 2015, 14, 2527-2540.	4.1	16
72	High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nature Medicine, 2015, 21, 81-85.	30.7	594

#	Article	IF	CITATIONS
73	A Novel Mouse Model for Stable Engraftment of a Human Immune System and Human Hepatocytes. PLoS ONE, 2015, 10, e0119820.	2.5	67
74	Activated innate lymphoid cells are associated with a reduced susceptibility to graft-versus-host disease. Blood, 2014, 124, 812-821.	1.4	191
75	New models of human immunity. Nature Biotechnology, 2014, 32, 335-336.	17.5	1
76	The role of ILC2 in pathology of type 2 inflammatory diseases. Current Opinion in Immunology, 2014, 31, 115-120.	5.5	56
77	A common solution to group 2 influenza virus neutralization. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 445-450.	7.1	187
78	Bispecific antibody generated with sortase and click chemistry has broad antiinfluenza virus activity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16820-16825.	7.1	74
79	Composition of Innate Lymphoid Cell Subsets in the Human Skin: Enrichment of NCR + ILC3 in Lesional Skin and Blood of Psoriasis Patients. Journal of Investigative Dermatology, 2014, 134, 2351-2360.	0.7	280
80	Innate Lymphoid Cells in Inflammation and Immunity. Immunity, 2014, 41, 366-374.	14.3	322
81	Critical assessment of human antibody generation in humanized mouse models. Journal of Immunological Methods, 2014, 410, 18-27.	1.4	34
82	Murine Ptenâ^'/â^' T-ALL requires non-redundant PI3K/mTOR and DLL4/Notch1 signals for maintenance and γc/TCR signals for thymic exit. Cancer Letters, 2014, 346, 237-248.	7.2	12
83	Human innate lymphoid cells. Blood, 2014, 124, 700-709.	1.4	337
84	Genetic manipulation of B cells for the isolation of rare therapeutic antibodies from the human repertoire. Methods, 2014, 65, 38-43.	3.8	22
85	Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. Journal of Allergy and Clinical Immunology, 2014, 133, 1184-1194.e7.	2.9	433
86	Human T-Cell Biology in a Mouse Environment. , 2014, , 109-125.		1
87	SnapShot: Innate Lymphoid Cells. Immunity, 2013, 39, 622-622.e1.	14.3	55
88	High-throughput identification of antigen-specific TCRs by TCR gene capture. Nature Medicine, 2013, 19, 1534-1541.	30.7	166
89	Structure-Based Design of a Fusion Glycoprotein Vaccine for Respiratory Syncytial Virus. Science, 2013, 342, 592-598.	12.6	797
90	Innate lymphoid cells — a proposal for uniform nomenclature. Nature Reviews Immunology, 2013, 13, 145-149.	22.7	2,054

#	Article	IF	CITATIONS
91	Pharmacological inhibition of carbonic anhydrase XII interferes with cell proliferation and induces cell apoptosis in T-cell lymphomas. Cancer Letters, 2013, 333, 76-88.	7.2	47
92	Lymphocyte development. Current Opinion in Immunology, 2013, 25, 127-129.	5.5	0
93	Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nature Immunology, 2013, 14, 221-229.	14.5	868
94	Th1―and Th2â€like subsets of innate lymphoid cells. Immunological Reviews, 2013, 252, 133-138.	6.0	33
95	The metabolic perturbators metformin, phenformin and AICAR interfere with the growth and survival of murine PTEN-deficient T cell lymphomas and human T-ALL/T-LL cancer cells. Cancer Letters, 2013, 336, 114-126.	7.2	60
96	Group 2 innate lymphoid cells show up in the skin. Immunology and Cell Biology, 2013, 91, 390-392.	2.3	8
97	Novel Staphylococcal Glycosyltransferases SdgA and SdgB Mediate Immunogenicity and Protection of Virulence-Associated Cell Wall Proteins. PLoS Pathogens, 2013, 9, e1003653.	4.7	61
98	Modulation of Signal Strength Switches Notch from an Inducer of T Cells to an Inducer of ILC2. Frontiers in Immunology, 2013, 4, 334.	4.8	61
99	Preclinical In Vivo Evaluation of the Safety of a Multi-shRNA-based Gene Therapy Against HIV-1. Molecular Therapy - Nucleic Acids, 2013, 2, e120.	5.1	42
100	ILâ€6 Triggers ILâ€21 production by human CD4 ⁺ T cells to drive STAT3â€dependent plasma cell differentiation in B cells. Immunology and Cell Biology, 2012, 90, 802-811.	2.3	110
101	The Transcription Factor GATA3 Is Essential for the Function of Human Type 2 Innate Lymphoid Cells. Immunity, 2012, 37, 649-659.	14.3	570
102	Testing for HLA/peptide tetramer-binding to the T cell receptor complex on human T lymphocytes. Results in Immunology, 2012, 2, 88-96.	2.2	2
103	The Aryl Hydrocarbon Receptor: A Sentinel Safeguarding the Survival of Immune Cells in the Gut. Immunity, 2012, 36, 5-7.	14.3	5
104	Transcriptional control of innate lymphoid cells. European Journal of Immunology, 2012, 42, 1916-1923.	2.9	53
105	Innate Lymphoid Cells: Emerging Insights in Development, Lineage Relationships, and Function. Annual Review of Immunology, 2012, 30, 647-675.	21.8	619
106	Functional Differences between Human NKp44â^' and NKp44+ RORC+ Innate Lymphoid Cells. Frontiers in Immunology, 2012, 3, 72.	4.8	148
107	Type 2 innate lymphoid cells–new members of the "type 2 franchise―that mediate allergic airway inflammation. European Journal of Immunology, 2012, 42, 1093-1096.	2.9	34
108	Functional CD47/signal regulatory protein alpha (SIRPα) interaction is required for optimal human T- and natural killer- (NK) cell homeostasis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13224-13229.	7.1	178

#	Article	IF	CITATIONS
109	Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nature Immunology, 2011, 12, 1055-1062.	14.5	1,024
110	Human IL23R R381Q Genetic Variant Implicated in Crohn's Disease Pathogenesis is Hypomorphic Resulting in Reduced Function of the Receptor. Gastroenterology, 2011, 140, S-273.	1.3	0
111	Another Armament in Gut Immunity: Lymphotoxin-Mediated Crosstalk between Innate Lymphoid and Dendritic Cells. Cell Host and Microbe, 2011, 10, 3-4.	11.0	6
112	Functional Studies on the IBD Susceptibility Gene IL23R Implicate Reduced Receptor Function in the Protective Genetic Variant R381Q. PLoS ONE, 2011, 6, e25038.	2.5	93
113	The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nature Immunology, 2011, 12, 21-27.	14.5	740
114	Quantitative events determine the differentiation and function of helper T cells. Nature Immunology, 2011, 12, 288-294.	14.5	58
115	Autonomous and extrinsic regulation of thymopoiesis inhuman immune system (HIS) mice. European Journal of Immunology, 2011, 41, 2883-2893.	2.9	17
116	Stem Cell Factor Consistently Improves Thymopoiesis after Experimental Transplantation of Murine or Human Hematopoietic Stem Cells in Immunodeficient Mice. Journal of Immunology, 2011, 187, 2974-2981.	0.8	15
117	IL-15 transpresentation promotes both human T-cell reconstitution and T-cell–dependent antibody responses in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6217-6222.	7.1	73
118	Antigen-Specific Monoclonal Antibodies Isolated from B Cells Expressing Constitutively Active STAT5. PLoS ONE, 2011, 6, e17189.	2.5	5
119	Thymic stromal lymphopoietin induces early human Bâ€cell proliferation and differentiation. European Journal of Immunology, 2010, 40, 955-965.	2.9	62
120	ILâ€22â€producing CD4 ⁺ T cells: Middleâ€men between the immune system and its environment. European Journal of Immunology, 2010, 40, 2369-2371.	2.9	42
121	Regulation of Cytokine Secretion in Human CD127+ LTi-like Innate Lymphoid Cells by Toll-like Receptor 2. Immunity, 2010, 33, 752-764.	14.3	227
122	Generation of stable monoclonal antibody–producing B cell receptor–positive human memory B cells by genetic programming. Nature Medicine, 2010, 16, 123-128.	30.7	260
123	IL-21 imposes a type II EBV gene expression on type III and type I B cells by the repression of C- and activation of LMP-1-promoter. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 872-877.	7.1	60
124	Synergy between IL-15 and Id2 Promotes the Expansion of Human NK Progenitor Cells, Which Can Be Counteracted by the E Protein HEB Required To Drive T Cell Development. Journal of Immunology, 2010, 184, 6670-6679.	0.8	38
125	Human NKp44+IL-22+ cells and LTi-like cells constitute a stable RORC+ lineage distinct from conventional natural killer cells. Journal of Experimental Medicine, 2010, 207, 281-290.	8.5	238
126	Isolation and In Vitro Generation of Gene-Manipulated Human Plasmacytoid and Conventional Dendritic Cells. Methods in Molecular Biology, 2010, 595, 67-85.	0.9	6

#	Article	IF	CITATIONS
127	In Vivo Modulation of Gene Expression by Lentiviral Transduction in "Human Immune System―Rag2â^'/â^'γc â^'/â~' Mice. Methods in Molecular Biology, 2010, 595, 87-115.	0.9	11
128	Generation of Human Antigen-Specific Monoclonal IgM Antibodies Using Vaccinated "Human Immune System―Mice. PLoS ONE, 2010, 5, e13137.	2.5	62
129	Stem Cell Factor (SCF) Improves Thymopoiesis After Experimental Hematopoietic Stem Cell Transplantation In Both a Murine BMT Model and In "human Immune system―(HIS) Mice, Receiving a Human Stem Cell Graft Blood, 2010, 116, 3725-3725.	1.4	0
130	IL-7 Enhances Thymic Human T Cell Development in "Human Immune System―Rag2Ⱂ/ⰒIL-2RγcⰒ/Ⱂ Mice without Affecting Peripheral T Cell Homeostasis. Journal of Immunology, 2009, 183, 7645-7655.	0.8	92
131	IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. Journal of Experimental Medicine, 2009, 206, 25-34.	8.5	481
132	Phosphoinositide-dependent kinase 1 controls migration and malignant transformation but not cell growth and proliferation in PTEN-null lymphocytes. Journal of Experimental Medicine, 2009, 206, 2441-2454.	8.5	67
133	Evaluation of safety and efficacy of RNAi against HIV-1 in the human immune system (Rag-2-/-γc-/-) mouse model. Gene Therapy, 2009, 16, 148-153.	4.5	75
134	Human fetal lymphoid tissue–inducer cells are interleukin 17–producing precursors to RORC+ CD127+ natural killer–like cells. Nature Immunology, 2009, 10, 66-74.	14.5	595
135	Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from TH-17, TH1 and TH2 cells. Nature Immunology, 2009, 10, 864-871.	14.5	872
136	Interleukin-22-producing innate immune cells: new players in mucosal immunity and tissue repair?. Nature Reviews Immunology, 2009, 9, 229-234.	22.7	155
137	Humanized Mice for Modeling Human Infectious Disease: Challenges, Progress, and Outlook. Cell Host and Microbe, 2009, 6, 5-9.	11.0	202
138	Repopulation Efficiencies of Adult Hepatocytes, Fetal Liver Progenitor Cells, and Embryonic Stem Cell-Derived Hepatic Cells in Albumin-Promoter-Enhancer Urokinase-Type Plasminogen Activator Mice. American Journal of Pathology, 2009, 175, 1483-1492.	3.8	106
139	Phosphoinositide-dependent kinase 1 controls migration and malignant transformation but not cell growth and proliferation in PTEN-null lymphocytes. Journal of Cell Biology, 2009, 187, i1-i1.	5.2	0
140	Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking. Nature Immunology, 2008, 9, 513-521.	14.5	364
141	T-cell lymphomas in T-cell-specific Pten-deficient mice originate in the thymus. Leukemia, 2008, 22, 608-619.	7.2	76
142	T cell–independent development and induction of somatic hypermutation in human lgM+lgD+CD27+ B cells. Journal of Experimental Medicine, 2008, 205, 2033-2042.	8.5	97
143	STAT3-Mediated Up-Regulation of BLIMP1 Is Coordinated with BCL6 Down-Regulation to Control Human Plasma Cell Differentiation. Journal of Immunology, 2008, 180, 4805-4815.	0.8	210
144	IL-21 is expressed in Hodgkin lymphoma and activates STAT5: evidence that activated STAT5 is required for Hodgkin lymphomagenesis. Blood, 2008, 111, 4706-4715.	1.4	117

#	Article	IF	CITATIONS
145	Spi-B inhibits human plasma cell differentiation by repressing BLIMP1 and XBP-1 expression. Blood, 2008, 112, 1804-1812.	1.4	66
146	Experimental Model for the Study of the Human Immune System. , 2008, 415, 65-82.		29
147	Functional Human Antigen-Specific T Cells Produced In Vitro Using Retroviral T Cell Receptor Transfer into Hematopoietic Progenitors. Journal of Immunology, 2007, 179, 4959-4968.	0.8	44
148	Flt3 Ligand Expands Lymphoid Progenitors Prior to Recovery of Thymopoiesis and Accelerates T Cell Reconstitution after Bone Marrow Transplantation. Journal of Immunology, 2007, 178, 3551-3557.	0.8	42
149	Use of a Novel Chimeric Mouse Model with a Functionally Active Human Immune System To Study Human Immunodeficiency Virus Type 1 Infection. Vaccine Journal, 2007, 14, 391-396.	3.1	65
150	Human thymus regeneration and T cell reconstitution. Seminars in Immunology, 2007, 19, 280-288.	5.6	31
151	Natural Killer or Dendritic: What's in a Name?. Immunity, 2007, 26, 11-16.	14.3	85
152	IL-7 mediated protection against minor antigen-mismatched allograft rejection is associated with enhanced recovery of regulatory T cells. Haematologica, 2007, 92, 1099-1106.	3.5	1
153	Experimental Models to Study Development and Function of the Human Immune System In Vivo. Journal of Immunology, 2006, 176, 2053-2058.	0.8	175
154	DEVELOPMENT OF HUMAN LYMPHOID CELLS. Annual Review of Immunology, 2006, 24, 287-320.	21.8	281
155	Delta-like1-induced Notch1 signaling regulates the human plasmacytoid dendritic cell versus T-cell lineage decision through control of GATA-3 and Spi-B. Blood, 2006, 107, 2446-2452.	1.4	92
156	Transient accumulation of human mature thymocytes and regulatory T cells with CD28 superagonist in "human immune system―Rag2-/-γc-/- mice. Blood, 2006, 108, 238-245.	1.4	91
157	Stimulated plasmacytoid dendritic cells impair human T-cell development. Blood, 2006, 108, 3792-3800.	1.4	24
158	Constitutively Active β-Catenin Promotes Expansion of Multipotent Hematopoietic Progenitors in Culture. Journal of Immunology, 2006, 177, 2294-2303.	0.8	53
159	Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. Journal of Experimental Medicine, 2006, 203, 1259-1271.	8.5	1,389
160	Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. Journal of Cell Biology, 2006, 173, i6-i6.	5.2	3
161	STAT5 regulates the self-renewal capacity and differentiation of human memory B cells and controls Bcl-6 expression. Nature Immunology, 2005, 6, 303-313.	14.5	145
162	Development and activation of regulatory T?cells in the human fetus. European Journal of Immunology, 2005, 35, 383-390.	2.9	150

#	Article	IF	CITATIONS
163	Immunogenicity, Including Vitiligo, and Feasibility of Vaccination With AutologousGM-CSF–Transduced Tumor Cells in Metastatic Melanoma Patients. Journal of Clinical Oncology, 2005, 23, 8978-8991.	1.6	102
164	Generation and Maintenance of Cloned Human T Cell Lines. Current Protocols in Immunology, 2005, 65, Unit 7.19.	3.6	18
165	The ETS Transcription Factor Spi-B Is Required for Human Plasmacytoid Dendritic Cell Development. Journal of Experimental Medicine, 2004, 200, 1503-1509.	8.5	161
166	Human Telomerase Reverse Transcriptase-Transduced Human Cytotoxic T Cells Suppress the Growth of Human Melanoma in Immunodeficient Mice. Cancer Research, 2004, 64, 2153-2161.	0.9	42
167	The Loss of PTEN Allows TCR αβ Lineage Thymocytes to Bypass IL-7 and Pre-TCR–mediated Signaling. Journal of Experimental Medicine, 2004, 200, 883-894.	8.5	113
168	Endogenous IFN-α Production by Plasmacytoid Dendritic Cells Exerts an Antiviral Effect on Thymic HIV-1 Infection. Journal of Immunology, 2004, 173, 7269-7276.	0.8	78
169	Monitoring the effect of gene silencing by RNA interference in human CD34+ cells injected into newborn RAG2-/- γc-/- mice: functional inactivation of p53 in developing T cells. Blood, 2004, 104, 3886-3893.	1.4	183
170	A new xenograft model for graft-versus-host disease by intravenous transfer of human peripheral blood mononuclear cells in RAG2-/- γc-/- double-mutant mice. Blood, 2003, 102, 2522-2531.	1.4	168
171	The transcription factor Spi-B is expressed in plasmacytoid DC precursors and inhibits T-, B-, and NK-cell development. Blood, 2003, 101, 1015-1023.	1.4	110
172	Telomerase levels control the lifespan of human T lymphocytes. Blood, 2003, 102, 849-857.	1.4	133
173	Ectopic hTERT expression extends the life span of human CD4+ helper and regulatory T-cell clones and confers resistance to oxidative stress–induced apoptosis. Blood, 2003, 101, 4512-4519.	1.4	100
174	Interleukin-7 improves T-cell recovery after experimental T-cell–depleted bone marrow transplantation in T-cell–deficient mice by strong expansion of recent thymic emigrants. Blood, 2003, 102, 1534-1540.	1.4	58
175	Interleukin-7. , 2003, , 439-446.		1
176	A senescence rescue screen identifies BCL6 as an inhibitor of anti-proliferative p19ARF-p53 signaling. Genes and Development, 2002, 16, 681-686.	5.9	132
177	Intrathymic and extrathymic development of human plasmacytoid dendritic cell precursors in vivo. Blood, 2002, 99, 2752-2759.	1.4	83
178	Generation of regulatory gut-homing human T lymphocytes using ex vivo interleukin 10 gene transfer. Gastroenterology, 2002, 123, 1877-1888.	1.3	38
179	Developmental origin of pre-DC2. Human Immunology, 2002, 63, 1072-1080.	2.4	21
180	Development of $\hat{I} \pm \hat{I}^2$ T cells in the human thymus. Nature Reviews Immunology, 2002, 2, 760-772.	22.7	236

#	Article	IF	CITATIONS
181	Dendritic cells in the thymus. , 2001, , 13-20.		0
182	Human Thymic Stromal Lymphopoietin Preferentially Stimulates Myeloid Cells. Journal of Immunology, 2001, 167, 336-343.	0.8	359
183	T cell receptor-dependent activation of human lymphocytes through cell surface ganglioside GT1b: implications for innate immunity. European Journal of Immunology, 2000, 30, 3199-3206.	2.9	6
184	Distinct signals control the hematopoiesis of lymphoid-related dendritic cells. Blood, 2000, 95, 128-137.	1.4	52
185	Highly efficient gene transfer in naive human T cells with a murine leukemia virus-based vector. Blood, 2000, 96, 885-893.	1.4	28
186	NFAT-controlled expression of GFP permits visualization and isolation of antigen-stimulated primary human T cells. Blood, 2000, 96, 459-466.	1.4	54
187	Id2 and Id3 Inhibit Development of Cd34+ Stem Cells into Predendritic Cell (Pre-Dc)2 but Not into Pre-Dc1. Journal of Experimental Medicine, 2000, 192, 1775-1784.	8.5	285
188	Immortalization of Human CD8+ T Cell Clones by Ectopic Expression of Telomerase Reverse Transcriptase. Journal of Immunology, 2000, 165, 4239-4245.	0.8	170
189	Changing T cell specificity by retroviral T cell receptor display. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 14578-14583.	7.1	89
190	Therapeutic potential of genetically modified T-lymphocytes in Crohn's disease. Gastroenterology, 2000, 118, A873.	1.3	6
191	Highly efficient gene transfer in naive human T cells with a murine leukemia virus-based vector. Blood, 2000, 96, 885-893.	1.4	11
192	NFAT-controlled expression of GFP permits visualization and isolation of antigen-stimulated primary human T cells. Blood, 2000, 96, 459-466.	1.4	2
193	NFAT-controlled expression of GFP permits visualization and isolation of antigen-stimulated primary human T cells. Blood, 2000, 96, 459-66.	1.4	28
194	TCR Gene Rearrangements and Expression of the Pre-T Cell Receptor Complex During Human T-Cell Differentiation. Blood, 1999, 93, 3033-3043.	1.4	116
195	Genetic Modification of Human B-Cell Development: B-Cell Development Is Inhibited by the Dominant Negative Helix Loop Helix Factor Id3. Blood, 1999, 94, 2637-2646.	1.4	69
196	Expression of pT mRNA in a Committed Dendritic Cell Precursor in the Human Thymus. Blood, 1999, 94, 2647-2657.	1.4	134
197	Enrichment of an Antigen-Specific T Cell Response by Retrovirally Transduced Human Dendritic Cells. Cellular Immunology, 1999, 195, 10-17.	3.0	67
198	Disruption of αβ but not of γδT cell development by overexpression of the helix–loop–helix protein Id3 in committed T cell progenitors. EMBO Journal, 1999, 18, 2793-2802.	7.8	91

#	Article	IF	CITATIONS
199	Green Fluorescent Protein as a Selectable Marker of Fibronectin-Facilitated Retroviral Gene Transfer in Primary Human T Lymphocytes. Human Gene Therapy, 1999, 10, 5-14.	2.7	68
200	Distinct Roles of the Phosphatidylinositol 3-Kinase and STAT5 Pathways in IL-7-Mediated Development of Human Thymocyte Precursors. Immunity, 1999, 10, 525-535.	14.3	182
201	Developmental stages in the human thymus. Seminars in Immunology, 1999, 11, 39-46.	5.6	65
202	TCR gene rearrangements and expression of the pre-T cell receptor complex during human T-cell differentiation. Blood, 1999, 93, 3033-43.	1.4	36
203	Genetic modification of human B-cell development: B-cell development is inhibited by the dominant negative helix loop helix factor Id3. Blood, 1999, 94, 2637-46.	1.4	22
204	Expression of pTalpha mRNA in a committed dendritic cell precursor in the human thymus. Blood, 1999, 94, 2647-57.	1.4	24
205	Early stages in the development of human T, natural killer and thymic dendritic cells. Immunological Reviews, 1998, 165, 75-86.	6.0	168
206	PJA-BP expression and TCR delta deletion during human T cell differentiation International Immunology, 1998, 10, 1873-1880.	4.0	10
207	T Cell Precursors in Man and Mice. Critical Reviews in Immunology, 1998, 18, 371-388.	0.5	30
208	Downregulation of CD1 Marks Acquisition of Functional Maturation of Human Thymocytes and Defines a Control Point in Late Stages of Human T Cell Development. Journal of Experimental Medicine, 1997, 185, 141-152.	8.5	94
209	Identification of a Committed T Cell Precursor Population in Adult Human Peripheral Blood. Journal of Experimental Medicine, 1997, 185, 875-884.	8.5	64
210	Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 4028-4033.	7.1	871
211	Inhibition of T Cell and Promotion of Natural Killer Cell Development by the Dominant Negative Helix Loop Helix Factor Id3. Journal of Experimental Medicine, 1997, 186, 1597-1602.	8.5	255
212	The Role of the Common Gamma Chain of the IL-2, IL-4, IL-7 and IL-15 Receptors in Development of Lymphocytes. Constitutive Expression of Bcl-2 does not Rescue the Developmental Defects in Gamma Common-Deficient Mice. , 1997, , 3-11.		7
213	Prethymic CD34+ progenitors capable of developing into T cells are not committed to the T cell lineage. Journal of Immunology, 1997, 158, 3571-7.	0.8	42
214	Fetal liver contains committed NK progenitors, but is not a site for development of CD34+ cells into T cells. Journal of Immunology, 1997, 159, 694-702.	0.8	54
215	Cloning of Human T and Natural Killer Cells. Methods, 1996, 9, 416-421.	3.8	12
216	CD34+CD38dim cells in the human thymus can differentiate into T, natural killer, and dendritic cells but are distinct from pluripotent stem cells. Blood, 1996, 87, 5196-5206.	1.4	196

#	Article	IF	CITATIONS
217	Cloning, expression, and crystallization of the Ŵ domain of a human γΠTâ€cell receptor. Protein Science, 1996, 5, 2638-2642.	7.6	6
218	CD34+CD38dim cells in the human thymus can differentiate into T, natural killer, and dendritic cells but are distinct from pluripotent stem cells. Blood, 1996, 87, 5196-206.	1.4	38
219	Use of bicistronic retroviral vectors encoding the LacZ gene together with a gene of interest: a method to select producer cells and follow transduced target cells. Cancer Gene Therapy, 1996, 3, 345-51.	4.6	22
220	Development of human T and natural killer cells. Blood, 1995, 85, 2654-2670.	1.4	342
221	Development of human T and natural killer cells. Blood, 1995, 85, 2654-70.	1.4	69
222	Lymphoid and myeloid differentiation of fetal liver CD34+lineage- cells in human thymic organ culture Journal of Experimental Medicine, 1994, 180, 123-132.	8.5	74
223	CD2/LFA-3 or LFA-l/ICAM-1 but not CD28/B7 interactions can augment cytotoxicity by virus-specific CD8+ cytotoxic T lymphocytes. European Journal of Immunology, 1993, 23, 418-424.	2.9	61
224	Precursors of CD3+CD4+CD8+ cells in the human thymus are defined by expression of CD34. Delineation of early events in human thymic development Journal of Experimental Medicine, 1993, 178, 391-401.	8.5	155
225	Functional expression of B7/BB1 on activated T lymphocytes Journal of Experimental Medicine, 1993, 177, 845-850.	8.5	258
226	Human natural killer cell committed thymocytes and their relation to the T cell lineage Journal of Experimental Medicine, 1993, 178, 1857-1866.	8.5	103
227	Phenotypic and functional analysis of T-cell precursors in the human fetal liver and thymus: CD7 expression in the early stages of T- and myeloid-cell development. Blood, 1993, 82, 3401-3414.	1.4	93
228	Chimerism and tolerance to host and donor in severe combined immunodeficiencies transplanted with fetal liver stem cells Journal of Clinical Investigation, 1993, 91, 1067-1078.	8.2	39
229	Untransfected and SV40-transfected fetal and postnatal human thymic stromal cells. Analysis of phenotype, cytokine gene expression and cytokine production. Thymus, 1993, 22, 13-33.	0.5	22
230	Ontogeny of human natural killer (NK) cells: fetal NK cells mediate cytolytic function and express cytoplasmic CD3 epsilon,delta proteins Journal of Experimental Medicine, 1992, 175, 1055-1066.	8.5	260
231	The developmental relationship between NK cells and T cells. Trends in Immunology, 1992, 13, 392-395.	7.5	206
232	Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression Journal of Experimental Medicine, 1991, 174, 915-924.	8.5	1,845
233	A novel beta 4, alpha 6 integrin-associated epithelial cell antigen involved in natural killer cell and antigen-specific cytotoxic T lymphocyte cytotoxicity Journal of Experimental Medicine, 1991, 174, 1571-1581.	8.5	17
234	Identification of a novel human thymocyte subset with a phenotype of CD3- CD4+ CD8 alpha + beta-1. Possible progeny of the CD3- CD4- CD8- subset. Journal of Immunology, 1991, 146, 4078-84.	0.8	47

#	Article	IF	CITATIONS
235	Natural killer cell clones can efficiently process and present protein antigens. Journal of Immunology, 1991, 147, 781-7.	0.8	62
236	Presence of Host-Reactive and MHC-Restricted T Cells in a Transplanted Severe Combined Immunodeficient (SCID) Patient Suggest Positive Selection and Absence of Clonal Deletion. Immunological Reviews, 1990, 116, 101-116.	6.0	21
237	A distinct wave of human T cell receptor gamma/delta lymphocytes in the early fetal thymus: evidence for controlled gene rearrangement and cytokine production Journal of Experimental Medicine, 1990, 172, 847-859.	8.5	143
238	Expression of Interleukin-10 Activity by Epstein-Barr Virus Protein BCRF1. Science, 1990, 250, 830-832.	12.6	543
239	Host-reactive CD4+ and CD8+ T cell clones isolated from a human chimera produce IL-5, IL-2, IFN-gamma and granulocyte/macrophage-colony-stimulating factor but not IL-4. Journal of Immunology, 1990, 144, 902-8.	0.8	82
240	Antigen recognition by MHC-incompatible cells of a human mismatched chimera Journal of Experimental Medicine, 1988, 168, 2139-2152.	8.5	71
241	IgE production by normal human lymphocytes is induced by interleukin 4 and suppressed by interferons gamma and alpha and prostaglandin E2 Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 6880-6884.	7.1	909
242	Simultaneous production of IL-2, IL-4, and IFN-gamma by activated human CD4+ and CD8+ T cell clones. Journal of Immunology, 1988, 141, 849-55.	0.8	404
243	Complexity of T cell receptor recognition sites for defined alloantigens. Journal of Immunology, 1987, 139, 1952-9.	0.8	21
244	A family of T-cell receptor molecules expressed on T-cell clones with different specificities for allomajor histocompatibility antigens. Human Immunology, 1986, 17, 426-442.	2.4	19
245	Monoclonal antibodies raised against denatured HLA-B locus heavy chains permit biochemical characterization of certain HLA-C locus products. Journal of Immunology, 1986, 137, 2299-306.	0.8	431
246	Antigen-specific cytotoxic T cell and antigen-specific proliferating T cell clones can be induced to cytolytic activity by monoclonal antibodies against T3. European Journal of Immunology, 1985, 15, 88-91.	2.9	171
247	Serum-free medium for generation and propagation of functional human cytotoxic and helper T cell clones. Journal of Immunological Methods, 1984, 72, 219-227.	1.4	366
248	Characterization of Monoclonal Antibodies Against Cell Surface Molecules Associated with Cytotoxic Activity of Natural and Activated Killer Cells and Cloned CTL Lines. Hybridoma, 1983, 2, 423-437.	0.6	143
249	Human T4+ and T8+ cytotoxic T lymphocyte clones directed at products of different class II major histocompatibility complex loci. Journal of Immunology, 1983, 131, 678-83.	0.8	74