
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8745714/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dehydrogenases of acetic acid bacteria. Biotechnology Advances, 2022, 54, 107863.	11.7	29
2	Reconstruction of a Cofactor Self-Sufficient Whole-Cell Biocatalyst System for Efficient Biosynthesis of Allitol from <scp>d</scp> -Glucose. Journal of Agricultural and Food Chemistry, 2022, 70, 3775-3784.	5.2	3
3	Combined evolutionary and metabolic engineering improve 2-keto-L-gulonic acid production in Gluconobacter oxydans WSH-004. Bioresource Technology, 2022, 354, 127107.	9.6	8
4	Characterization of a sorbose oxidase involved in the biosynthesis of 2-keto-L-gulonic acid from Gluconobacter oxydans WSH-004. Process Biochemistry, 2022, 116, 1-7.	3.7	5
5	Enhanced production of l-sorbose by systematic engineering of dehydrogenases in Gluconobacter oxydans. Synthetic and Systems Biotechnology, 2022, 7, 730-737.	3.7	8
6	Production of L-Lactic Acid in Saccharomyces cerevisiae Through Metabolic Engineering and Rational Cofactor Engineering. Sugar Tech, 2022, 24, 1272-1283.	1.8	4
7	Enhanced cobalamin biosynthesis in Ensifer adhaerens by regulation of key genes with gradient promoters. Synthetic and Systems Biotechnology, 2022, 7, 941-948.	3.7	4
8	Glycosylation Modification Enhances (2 <i>S</i>)-Naringenin Production in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2022, 11, 2339-2347.	3.8	16
9	Engineering caveolin-mediated endocytosis in Saccharomyces cerevisiae. Synthetic and Systems Biotechnology, 2022, 7, 1056-1063.	3.7	2
10	Effects of metabolic pathway gene copy numbers on the biosynthesis of (2S)-naringenin in Saccharomyces cerevisiae. Journal of Biotechnology, 2021, 325, 119-127.	3.8	41
11	Insights into the multiscale structure and pasting properties of ball-milled waxy maize and waxy rice starches. International Journal of Biological Macromolecules, 2021, 168, 205-214.	7.5	22
12	Foodâ€Grade Expression and Characterization of a Dextranase from <i>Chaetomium gracile</i> Suitable for Sugarcane Juice Clarification. Chemistry and Biodiversity, 2021, 18, e2000797.	2.1	9
13	Comparative analysis of the chemical and biochemical synthesis of keto acids. Biotechnology Advances, 2021, 47, 107706.	11.7	29
14	Chaperone-mediated protein folding enhanced D-psicose 3-epimerase expression in engineered Bacillus subtilis. Process Biochemistry, 2021, 103, 65-70.	3.7	5
15	Improving bioconversion of eugenol to coniferyl alcohol by constitutive promoters in Escherichia coli. Biochemical Engineering Journal, 2021, 168, 107953.	3.6	7
16	Identification of Gradient Promoters of Gluconobacter oxydans and Their Applications in the Biosynthesis of 2-Keto-L-Gulonic Acid. Frontiers in Bioengineering and Biotechnology, 2021, 9, 673844.	4.1	12
17	Systematically Engineered Fatty Acid Catabolite Pathway for the Production of (2 <i>S</i>)-Naringenin in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2021, 10, 1166-1175.	3.8	28
18	Optimum chalcone synthase for flavonoid biosynthesis in microorganisms. Critical Reviews in Biotechnology, 2021, 41, 1194-1208.	9.0	10

#	Article	lF	CITATIONS
19	Optimization of CRISPRâ€Cas9 through promoter replacement and efficient production of Lâ€homoserine in <i>Corynebacterium glutamicum</i> . Biotechnology Journal, 2021, 16, e2100093.	3.5	11
20	Efficient Production of Orientin and Vitexin from Luteolin and Apigenin Using Coupled Catalysis of Glycosyltransferase and Sucrose Synthase. Journal of Agricultural and Food Chemistry, 2021, 69, 6578-6587.	5.2	21
21	Enhanced Thermostability of D-Psicose 3-Epimerase from Clostridium bolteae through Rational Design and Engineering of New Disulfide Bridges. International Journal of Molecular Sciences, 2021, 22, 10007.	4.1	16
22	Efficient Production of Scleroglucan by Sclerotium rolfsii and Insights Into Molecular Weight Modification by High-Pressure Homogenization. Frontiers in Bioengineering and Biotechnology, 2021, 9, 748213.	4.1	5
23	Efficient biosynthesis of D-allulose in Bacillus subtilis through D-psicose 3-epimerase translation modification. International Journal of Biological Macromolecules, 2021, 187, 1-8.	7.5	9
24	Metabolism and strategies for enhanced supply of acetyl-CoA in Saccharomyces cerevisiae. Bioresource Technology, 2021, 342, 125978.	9.6	35
25	Enhancement of pyruvic acid production in Candida glabrata by engineering hypoxia-inducible factor 1. Bioresource Technology, 2020, 295, 122248.	9.6	18
26	Optimal Fermentation of Saccharomyces cerevisiae Expressing a Dextranase from Chaetomium gracile. Sugar Tech, 2020, 22, 171-178.	1.8	4
27	Oxidized konjac glucomannan-cassava starch and sucrose esters as novel excipients for sustained-release matrix tablets. International Journal of Biological Macromolecules, 2020, 156, 1045-1052.	7.5	11
28	Identification and characterization of three flavonoid 3-O-glycosyltransferases from Epimedium koreanum Nakai. Biochemical Engineering Journal, 2020, 163, 107759.	3.6	15
29	Production of 2-keto-L-gulonic acid by metabolically engineered Escherichia coli. Bioresource Technology, 2020, 318, 124069.	9.6	18
30	Active tyrosine phenol-lyase aggregates induced by terminally attached functional peptides in <i>Escherichia coli</i> . Journal of Industrial Microbiology and Biotechnology, 2020, 47, 563-571.	3.0	6
31	Enhancement of 2-phenylethanol production by a wild-type Wickerhamomyces anomalus strain isolated from rice wine. Bioresource Technology, 2020, 318, 124257.	9.6	20
32	Efficient production of L-homoserine in Corynebacterium glutamicum ATCC 13032 by redistribution of metabolic flux. Biochemical Engineering Journal, 2020, 161, 107665.	3.6	18
33	Obtaining a series of native gradient promoter-5′-UTR sequences in Corynebacterium glutamicum ATCC 13032. Microbial Cell Factories, 2020, 19, 120.	4.0	19
34	Expression of d-psicose-3-epimerase from Clostridium bolteae and Dorea sp. and whole-cell production of d-psicose in Bacillus subtilis. Annals of Microbiology, 2020, 70, .	2.6	11
35	High Throughput Screening Platform for a FAD-Dependent L-Sorbose Dehydrogenase. Frontiers in Bioengineering and Biotechnology, 2020, 8, 194.	4.1	10
36	Construction of a heat-inducible Escherichia coli strain for efficient de novo biosynthesis of l-tyrosine. Process Biochemistry, 2020, 92, 85-92.	3.7	23

#	Article	IF	CITATIONS
37	Site-directed mutagenesis to improve the thermostability of tyrosine phenol-lyase. Journal of Biotechnology, 2020, 310, 6-12.	3.8	4
38	Regulating the biosynthesis of pyridoxal 5'-phosphate with riboswitch to enhance L-DOPA production by Escherichia coli whole-cell biotransformation. Journal of Biotechnology, 2020, 321, 68-77.	3.8	6
39	Efficient separation of α-ketoglutarate from Yarrowia lipolytica WSH-Z06 culture broth by converting pyruvate to l-tyrosine. Bioresource Technology, 2019, 292, 121897.	9.6	17
40	Production of L-tyrosine using tyrosine phenol-lyase by whole cell biotransformation approach. Enzyme and Microbial Technology, 2019, 131, 109430.	3.2	11
41	Efficient biosynthesis of 2-keto-D-gluconic acid by fed-batch culture of metabolically engineered Gluconobacter japonicus. Synthetic and Systems Biotechnology, 2019, 4, 134-141.	3.7	22
42	Enhancing scleroglucan production by Sclerotium rolfsii WSH-G01 through a pH-shift strategy based on kinetic analysis. Bioresource Technology, 2019, 293, 122098.	9.6	18
43	Systematic characterization of sorbose/sorbosone dehydrogenases and sorbosone dehydrogenases from Ketogulonicigenium vulgare WSH-001. Journal of Biotechnology, 2019, 301, 24-34.	3.8	14
44	Efficient bioconversion of epimedin C to icariin by a glycosidase from Aspergillus nidulans. Bioresource Technology, 2019, 289, 121612.	9.6	30
45	Metabolic engineering of Escherichia coli BL21 (DE3) for de novo production of l-DOPA from d-glucose. Microbial Cell Factories, 2019, 18, 74.	4.0	59
46	Enhanced Pyruvate Production in <i>Candida glabrata</i> by Engineering ATP Futile Cycle System. ACS Synthetic Biology, 2019, 8, 787-795.	3.8	26
47	Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway. Metabolic Engineering, 2018, 47, 254-262.	7.0	105
48	Enhanced pyruvate production in <i>Candida glabrata</i> by carrier engineering. Biotechnology and Bioengineering, 2018, 115, 473-482.	3.3	22
49	Enhancement of Catalytic Performance of α-dextranase from Chaetomium gracile Through Optimization and Suitable Shear Force. Sugar Tech, 2018, 20, 78-87.	1.8	7
50	Separation of αâ€ketoglutaric acid and pyruvic acid from the culture broth of Yarrowia lipolytica WSHâ€Z06 by chromatographic methods. Biotechnology Progress, 2018, 34, 1370-1379.	2.6	4
51	Separation and purification of α-ketoglutarate and pyruvate from the fermentation broth of Yarrowia lipolytica. Bioprocess and Biosystems Engineering, 2018, 41, 1519-1527.	3.4	6
52	Current challenges facing one-step production of l-ascorbic acid. Biotechnology Advances, 2018, 36, 1882-1899.	11.7	49
53	A high-throughput screening procedure for enhancing pyruvate production in Candida glabrata by random mutagenesis. Bioprocess and Biosystems Engineering, 2017, 40, 693-701.	3.4	27
54	The industrial applications of cassava: current status, opportunities and prospects. Journal of the Science of Food and Agriculture, 2017, 97, 2282-2290.	3.5	87

#	Article	IF	CITATIONS
55	Identification of a polysaccharide produced by the pyruvate overproducer Candida glabrata CCTCC M202019. Applied Microbiology and Biotechnology, 2017, 101, 4447-4458.	3.6	12
56	Biosynthesis of keto acids by fed-batch culture of Yarrowia lipolytica WSH-Z06. Bioresource Technology, 2017, 243, 1037-1043.	9.6	38
57	Improved Dextranase Production by Chaetomium gracile Through Optimization of Carbon Source and Fermentation Parameters. Sugar Tech, 2017, 19, 432-437.	1.8	9
58	Identification of transporter proteins for PQQ-secretion pathways by transcriptomics and proteomics analysis in Gluconobacter oxydans WSH-003. Frontiers of Chemical Science and Engineering, 2017, 11, 72-88.	4.4	18
59	Microbial synthesis of poly-γ-glutamic acid: current progress, challenges, and future perspectives. Biotechnology for Biofuels, 2016, 9, 134.	6.2	186
60	Overexpression of pyrroloquinoline quinone biosynthetic genes affects l -sorbose production in Gluconobacter oxydans WSH-003. Biochemical Engineering Journal, 2016, 112, 70-77.	3.6	24
61	Efficient biosynthesis of (2S)-pinocembrin from d-glucose by integrating engineering central metabolic pathways with a pH-shift control strategy. Bioresource Technology, 2016, 218, 999-1007.	9.6	43
62	Stepwise modular pathway engineering of Escherichia coli for efficient one-step production of (2S)-pinocembrin. Journal of Biotechnology, 2016, 231, 183-192.	3.8	30
63	Enhanced production of <scp>l</scp> -sorbose in an industrial <i>Gluconobacter oxydans</i> strain by identification of a strong promoter based on proteomics analysis. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 1039-1047.	3.0	27
64	Modular Optimization of Heterologous Pathways for De Novo Synthesis of (2S)-Naringenin in Escherichia coli. PLoS ONE, 2014, 9, e101492.	2.5	78
65	Efficient Synthesis of Eriodictyol from <scp>l</scp> -Tyrosine in Escherichia coli. Applied and Environmental Microbiology, 2014, 80, 3072-3080.	3.1	87
66	Enhanced production of L-sorbose from D-sorbitol by improving the mRNA abundance of sorbitol dehydrogenase in Gluconobacter oxydansWSH-003. Microbial Cell Factories, 2014, 13, 146.	4.0	38
67	Novel fermentation processes for manufacturing plant natural products. Current Opinion in Biotechnology, 2014, 25, 17-23.	6.6	52
68	Comparative proteomic analysis of Saccharomyces cerevisiae under different nitrogen sources. Journal of Proteomics, 2014, 101, 102-112.	2.4	27
69	Effects of pyruvate dehydrogenase subunits overexpression on the α-ketoglutarate production in Yarrowia lipolytica WSH-Z06. Applied Microbiology and Biotechnology, 2014, 98, 7003-7012.	3.6	43
70	Systems metabolic engineering of microorganisms to achieve large-scale production of flavonoid scaffolds. Journal of Biotechnology, 2014, 188, 72-80.	3.8	39
71	Stepwise metabolic engineering of Gluconobacter oxydans WSH-003 for the direct production of 2-keto-l-gulonic acid from d-sorbitol. Metabolic Engineering, 2014, 24, 30-37.	7.0	68
72	Efficient transformation of Rhizopus delemar by electroporation of germinated spores. Journal of Microbiological Methods, 2014, 103, 58-63.	1.6	9

#	Article	IF	CITATIONS
73	Characterization of a group of pyrroloquinoline quinoneâ€dependent dehydrogenases that are involved in the conversion of <scp>L</scp> â€sorbose to 2â€Ketoâ€ <scp>L</scp> â€gulonic acid in <i>Ketogulonicigenium vulgare</i> WSHâ€001. Biotechnology Progress, 2013, 29, 1398-1404.	2.6	22
74	Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy. Metabolic Engineering, 2013, 16, 48-55.	7.0	193
75	Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae. Journal of Biotechnology, 2013, 168, 446-451.	3.8	78
76	Indigenous plasmids of Bacillus megaterium WSH-002 involved in mutualism with Ketogulonicigenium vulgare WSH-001. Plasmid, 2013, 70, 240-246.	1.4	6
77	Efficient production of l-sorbose from d-sorbitol by whole cell immobilization of Gluconobacter oxydans WSH-003. Biochemical Engineering Journal, 2013, 77, 171-176.	3.6	25
78	Draft Genome Sequence of Gluconobacter oxydans WSH-003, a Strain That Is Extremely Tolerant of Saccharides and Alditols. Journal of Bacteriology, 2012, 194, 4455-4456.	2.2	31
79	Enhanced alpha-ketoglutaric acid production in Yarrowia lipolytica WSH-Z06 by regulation of the pyruvate carboxylation pathway. Applied Microbiology and Biotechnology, 2012, 96, 1527-1537.	3.6	70
80	Production of α-Cyclodextrin Glycosyltransferase in Bacillus megaterium MS941 by Systematic Codon Usage Optimization. Journal of Agricultural and Food Chemistry, 2012, 60, 10285-10292.	5.2	16
81	Sporulation and spore stability of Bacillus megaterium enhance Ketogulonigenium vulgare propagation and 2-keto-l-gulonic acid biosynthesis. Bioresource Technology, 2012, 107, 399-404.	9.6	37
82	Enhanced α-ketoglutaric acid production in Yarrowia lipolytica WSH-Z06 by an improved integrated fed-batch strategy. Bioresource Technology, 2012, 114, 597-602.	9.6	61
83	Optimization of fumaric acid production by Rhizopus delemar based on the morphology formation. Bioresource Technology, 2011, 102, 9345-9349.	9.6	75
84	Development of chemically defined media supporting high cell density growth of Ketogulonicigenium vulgare and Bacillus megaterium. Bioresource Technology, 2011, 102, 4807-4814.	9.6	58
85	Complete Genome Sequence of the Industrial Strain Ketogulonicigenium vulgare WSH-001. Journal of Bacteriology, 2011, 193, 6108-6109.	2.2	36
86	Screening of a thiamine-auxotrophic yeast for $\hat{I}\pm$ -ketoglutaric acid overproduction. Letters in Applied Microbiology, 2010, 51, 264-271.	2.2	67
87	Enhancement of pyruvate productivity by inducible expression of a F0F1-ATPase inhibitor INH1 in Torulopsis glabrata CCTCC M202019. Journal of Biotechnology, 2009, 144, 120-126.	3.8	30
88	A reusable method for construction of non-marker large fragment deletion yeast auxotroph strains: A practice in Torulopsis glabrata. Journal of Microbiological Methods, 2009, 76, 70-74.	1.6	35
89	Citrate protect the growth of Torulopsis glabrata CCTCC M202019 against acidic stress as additional ATP supplier. Journal of Biotechnology, 2008, 136, S741.	3.8	1
90	Comparison of LLE and SPME Methods for Screening the Aroma Compounds in Rum. Journal of the American Society of Brewing Chemists, 0, , 1-10.	1.1	1

#	Article	IF	CITATIONS
91	Efficient Production of 2,5-Diketo-D-gluconic Acid by Reducing Browning Levels During Gluconobacter oxydans ATCC 9937 Fermentation. Frontiers in Bioengineering and Biotechnology, 0, 10,	4.1	2