Marc-David Ruepp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8743675/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	FUS-dependent liquid–liquid phase separation is important for DNA repair initiation. Journal of Cell Biology, 2021, 220, .	5.2	86
2	ALS-linked FUS mutants affect the localization of U7 snRNP and replication-dependent histone gene expression in human cells. Scientific Reports, 2021, 11, 11868.	3.3	7
3	The phase separation-dependent FUS interactome reveals nuclear and cytoplasmic function of liquid–liquid phase separation. Nucleic Acids Research, 2021, 49, 7713-7731.	14.5	53
4	Repurposing of glycine transport inhibitors for the treatment of erythropoietic protoporphyria. Cell Chemical Biology, 2021, 28, 1221-1234.e6.	5.2	7
5	Aberrant interaction of FUS with the U1 snRNA provides a molecular mechanism of FUS induced amyotrophic lateral sclerosis. Nature Communications, 2020, 11, 6341.	12.8	47
6	FUS ALS-causative mutations impair FUS autoregulation and splicing factor networks through intron retention. Nucleic Acids Research, 2020, 48, 6889-6905.	14.5	70
7	miR-129-5p: A key factor and therapeutic target in amyotrophic lateral sclerosis. Progress in Neurobiology, 2020, 190, 101803.	5.7	31
8	Human vtRNA1-1 Levels Modulate Signaling Pathways and Regulate Apoptosis in Human Cancer Cells. Biomolecules, 2020, 10, 614.	4.0	24
9	Targeting CD47 in Anaplastic Thyroid Carcinoma Enhances Tumor Phagocytosis by Macrophages and Is a Promising Therapeutic Strategy. Thyroid, 2019, 29, 979-992.	4.5	71
10	Muscleblind acts as a modifier of FUS toxicity by modulating stress granule dynamics and SMN localization. Nature Communications, 2019, 10, 5583.	12.8	31
11	Mapping the Orthosteric Binding Site of the Human 5-HT ₃ Receptor Using Photo-cross-linking Antagonists. ACS Chemical Neuroscience, 2019, 10, 438-450.	3.5	6
12	The Solution Structure of FUS Bound to RNA Reveals a Bipartite Mode of RNA Recognition with Both Sequence and Shape Specificity. Molecular Cell, 2019, 73, 490-504.e6.	9.7	151
13	Phase Separation of FUS Is Suppressed by Its Nuclear Import Receptor and Arginine Methylation. Cell, 2018, 173, 706-719.e13.	28.9	484
14	CRISPR-Trap: a clean approach for the generation of gene knockouts and gene replacements in human cells. Molecular Biology of the Cell, 2018, 29, 75-83.	2.1	37
15	Hypertonic Stress Causes Cytoplasmic Translocation of Neuronal, but Not Astrocytic, FUS due to Impaired Transportin Function. Cell Reports, 2018, 24, 987-1000.e7.	6.4	49
16	The emerging role of minor intron splicing in neurological disorders. Cell Stress, 2018, 2, 40-54.	3.2	26
17	Generation of Gene Knockout and Gene Replacement with Complete Removal of Full-length Endogenous Transcript Using CRISPR-Trap. Bio-protocol, 2018, 8, e3052.	0.4	0
18	The binding orientation of epibatidine at $\hat{I}\pm7$ nACh receptors. Neuropharmacology, 2017, 116, 421-428.	4.1	13

2

Marc-David Ruepp

#	Article	IF	CITATIONS
19	The binding orientations of structurally-related ligands can differ; AÂcautionary note. Neuropharmacology, 2017, 119, 48-61.	4.1	18
20	Minor intron splicing is regulated by <scp>FUS</scp> and affected by <scp>ALS</scp> â€associated <scp>FUS</scp> mutants. EMBO Journal, 2016, 35, 1504-1521.	7.8	100
21	Monomethylated and unmethylated FUS exhibit increased binding to Transportin and distinguish FTLD-FUS from ALS-FUS. Acta Neuropathologica, 2016, 131, 587-604.	7.7	76
22	Identification of Interactions in the NMD Complex Using Proximity-Dependent Biotinylation (BioID). PLoS ONE, 2016, 11, e0150239.	2.5	31
23	Tracking individual membrane proteins and their biochemistry: The power of direct observation. Neuropharmacology, 2015, 98, 22-30.	4.1	18
24	FUS/TLS contributes to replication-dependent histone gene expression by interaction with U7 snRNPs and histone-specific transcription factors. Nucleic Acids Research, 2015, 43, gkv794.	14.5	32
25	A fluorescent approach for identifying P2X1 ligands. Neuropharmacology, 2015, 98, 13-21.	4.1	9
26	Characterizing new fluorescent tools for studying 5-HT3 receptor pharmacology. Neuropharmacology, 2015, 90, 63-73.	4.1	17
27	Synthesis and Characterization of Photoaffinity Probes that Target the 5-HT3 Receptor. Chimia, 2014, 68, 239.	0.6	6
28	Effect of Combined Systemic and Local Morpholino Treatment on the Spinal Muscular Atrophy Δ7 Mouse Model Phenotype. Clinical Therapeutics, 2014, 36, 340-356.e5.	2.5	44
29	Comparison of EJC-enhanced and EJC-independent NMD in human cells reveals two partially redundant degradation pathways. Rna, 2013, 19, 1432-1448.	3.5	114
30	Paraquat Modulates Alternative Pre-mRNA Splicing by Modifying the Intracellular Distribution of SRPK2. PLoS ONE, 2013, 8, e61980.	2.5	20
31	Interactions of CstF-64, CstF-77, and symplekin: Implications on localisation and function. Molecular Biology of the Cell, 2011, 22, 91-104.	2.1	51
32	mRNA 3 ^{â€2} end processing and more—multiple functions of mammalian cleavage factor Iâ€68. Wiley Interdisciplinary Reviews RNA, 2011, 2, 79-91.	6.4	15
33	The 68 kDa subunit of mammalian cleavage factor I interacts with the U7 small nuclear ribonucleoprotein and participates in 3′-end processing of animal histone mRNAs. Nucleic Acids Research, 2010, 38, 7637-7650.	14.5	20
34	Rescue of a severe mouse model for spinal muscular atrophy by U7 snRNA-mediated splicing modulation. Human Molecular Genetics, 2009, 18, 546-555.	2.9	91
35	Mammalian pre-mRNA 3′ End Processing Factor CF I _m 68 Functions in mRNA Export. Molecular Biology of the Cell, 2009, 20, 5211-5223.	2.1	50