

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8741529/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solarâ€ŧoâ€Hydrogen Energy Conversion Based on Water Splitting. Advanced Energy Materials, 2018, 8, 1701620.	19.5	429
2	Opening Magnesium Storage Capability of Two-Dimensional MXene by Intercalation of Cationic Surfactant. ACS Nano, 2018, 12, 3733-3740.	14.6	208
3	A Thin NiFe Hydroxide Film Formed by Stepwise Electrodeposition Strategy with Significantly Improved Catalytic Water Oxidation Efficiency. Advanced Energy Materials, 2017, 7, 1602547.	19.5	183
4	Room temperature ferromagnetism of pure ZnO nanoparticles. Journal of Applied Physics, 2009, 105, .	2.5	178
5	Enzymeâ€Inspired Iron Porphyrins for Improved Electrocatalytic Oxygen Reduction and Evolution Reactions. Angewandte Chemie - International Edition, 2021, 60, 7576-7581.	13.8	164
6	Bactericidal action mechanism of negatively charged food grade clove oil nanoemulsions. Food Chemistry, 2016, 197, 75-83.	8.2	124
7	Resistive Switching in Single Epitaxial ZnO Nanoislands. ACS Nano, 2012, 6, 1051-1058.	14.6	118
8	Cobalt–Nitrogenâ€Ðoped Helical Carbonaceous Nanotubes as a Class of Efficient Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2018, 57, 13187-13191.	13.8	112
9	Attaching Cobalt Corroles onto Carbon Nanotubes: Verification of Four-Electron Oxygen Reduction by Mononuclear Cobalt Complexes with Significantly Improved Efficiency. ACS Catalysis, 2019, 9, 4551-4560.	11.2	96
10	Autologous Cobalt Phosphates with Modulated Coordination Sites for Electrocatalytic Water Oxidation. Angewandte Chemie - International Edition, 2020, 59, 8917-8921.	13.8	89
11	The effect of oxygen vacancy on switching mechanism of ZnO resistive switching memory. Applied Physics Letters, 2017, 110, .	3.3	79
12	Multimode Resistive Switching in Single ZnO Nanoisland System. Scientific Reports, 2013, 3, 2405.	3.3	65
13	Ferromagnetism in ultrathin MoS2 nanosheets: from amorphous to crystalline. Nanoscale Research Letters, 2014, 9, 586.	5.7	63
14	Room-temperature ferromagnetism in Er-doped ZnO thin films. Scripta Materialia, 2009, 60, 289-292.	5.2	58
15	Structural and physico-chemical properties of insoluble rice bran fiber: effect of acid–base induced modifications. RSC Advances, 2015, 5, 79915-79923.	3.6	55
16	NiFe Oxalate Nanomesh Array with Homogenous Doping of Fe for Electrocatalytic Water Oxidation. Small, 2019, 15, e1904579.	10.0	51
17	Synthesis of MXene-supported layered MoS2 with enhanced electrochemical performance for Mg batteries. Chinese Chemical Letters, 2018, 29, 1313-1316.	9.0	45
18	Manganese(<scp>ii</scp>) phosphate nanosheet assembly with native out-of-plane Mn centres for electrocatalytic water oxidation. Chemical Science, 2019, 10, 191-197.	7.4	44

Jing Qi

#	Article	IF	CITATIONS
19	Current self-complianced and self-rectifying resistive switching in Ag-electroded single Na-doped ZnO nanowires. Nanoscale, 2013, 5, 2651.	5.6	41
20	2D Metal–Organic Framework Derived CuCo Alloy Nanoparticles Encapsulated by Nitrogenâ€Đoped Carbonaceous Nanoleaves for Efficient Bifunctional Oxygen Electrocatalyst and Zinc–Air Batteries. Chemistry - A European Journal, 2019, 25, 12780-12788.	3.3	38
21	Magnetic properties of Er-doped ZnO films prepared by reactive magnetron sputtering. Applied Physics A: Materials Science and Processing, 2010, 100, 79-82.	2.3	37
22	Autologous Cobalt Phosphates with Modulated Coordination Sites for Electrocatalytic Water Oxidation. Angewandte Chemie, 2020, 132, 9002-9006.	2.0	34
23	Hollow Bimetallic Zinc Cobalt Phosphosulfides for Efficient Overall Water Splitting. Chemistry - A European Journal, 2019, 25, 621-626.	3.3	29
24	Resistive switching in Ga- and Sb-doped ZnO single nanowire devices. Journal of Materials Chemistry C, 2015, 3, 11881-11885.	5.5	26
25	Genetic determinants involved in the biodegradation of naphthalene and phenanthrene in Pseudomonas aeruginosa PAO1. Environmental Science and Pollution Research, 2015, 22, 6743-6755.	5.3	20
26	Transforming from paramagnetism to room temperature ferromagnetism in CuO by ball milling. AIP Advances, 2011, 1, .	1.3	19
27	Enhanced field emission from ZnO nanowire arrays utilizing MgO buffer between seed layer and silicon substrate. Applied Surface Science, 2016, 387, 103-108.	6.1	19
28	Cobalt–Nitrogenâ€Doped Helical Carbonaceous Nanotubes as a Class of Efficient Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie, 2018, 130, 13371-13375.	2.0	19
29	Enzymeâ€Inspired Iron Porphyrins for Improved Electrocatalytic Oxygen Reduction and Evolution Reactions. Angewandte Chemie, 2021, 133, 7654-7659.	2.0	16
30	Elucidating the mechanistic origins of P dopants triggered active sites and direct Z-scheme charge transfer by P-MoS2@WO3 heterostructures for efficient photocatalytic hydrogen evolution. Journal of Alloys and Compounds, 2021, 872, 159637.	5.5	13
31	Resistive switching behaviors mediated by grain boundaries in one longitudinal Al/MoS2&PVP/ITO device. Materials Science in Semiconductor Processing, 2019, 91, 246-251.	4.0	11
32	Write-Once–Read-Many-Times Memory Based on ZnO on p-Si for Long-Time Archival Storage. IEEE Electron Device Letters, 2011, 32, 1445-1447.	3.9	10
33	Hollow Mesoporous Silica@Zeolitic Imidazolate Framework Capsules and Their Applications for Gentamicin Delivery. Neural Plasticity, 2018, 2018, 1-9.	2.2	10
34	Hydrate Equilibrium Measurements for CH ₄ and CO ₂ /CH ₄ Mixture in the Presence of Single 2-Methyl-2-propanol and 1,1-Dichloro-1-fluoroethane. Journal of Chemical & Engineering Data, 2018, 63, 3145-3149.	1.9	10
35	Resistive switching behavior and mechanism of room-temperature-fabricated flexible Al/TiS2-PVP/ITO/PET memory devices. Current Applied Physics, 2019, 19, 458-463.	2.4	9
36	Stabilization of thick, rhombohedral Hf0.5Zr0.5O2 epilayer on c-plane ZnO. Applied Physics Letters, 2021, 119, .	3.3	9

Jing Qi

#	Article	IF	CITATIONS
37	Metal/ZnO/MgO/Si/Metal Write-Once-Read-Many-Times Memory. IEEE Transactions on Electron Devices, 2016, 63, 3508-3513.	3.0	7
38	High Selectivity CO ₂ Capture from Biogas by Hydration Separation Based on the Kinetic Difference in the Presence of 1,1-Dichloro-1-fluoroethane. Energy & Fuels, 2021, 35, 10689-10702.	5.1	6
39	The effect of top contact on ZnO writeâ€once–readâ€manyâ€ŧimes memory. Physica Status Solidi - Rapid Research Letters, 2012, 6, 478-480.	2.4	5
40	Resistive switching behaviors and mechanisms of HfS2 film memory devices studied by experiments and density functional theory calculations. Applied Physics Letters, 2020, 116, .	3.3	5
41	Unipolar resistive switching in Au/Cr/Mg0.84Zn0.16O2â^î^ /p+-Si. Applied Physics A: Materials Science and Processing, 2012, 107, 891-897.	2.3	4
42	Percolation theory based model of conduction mechanism and characteristic contradiction in ZnO RRAM. Applied Physics Letters, 2021, 119, 213503.	3.3	0