Songfeng Pei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8740599/publications.pdf

Version: 2024-02-01

38 papers 16,117 citations

27 h-index

201674

39 g-index

40 all docs

40 docs citations

times ranked

40

22122 citing authors

#	Article	IF	CITATIONS
1	Ultrastable Interfacial Contacts Enabling Unimpeded Charge Transfer and Ion Diffusion in Flexible Lithiumâ€lon Batteries. Advanced Science, 2022, 9, e2105419.	11.2	12
2	Dendriteâ€Free Lithium Deposition and Stripping Regulated by Aligned Microchannels for Stable Lithium Metal Batteries. Advanced Functional Materials, 2022, 32, .	14.9	40
3	Fabrication of Largeâ€Area Uniform Nanometerâ€Thick Functional Layers and Their Stacks for Flexible Quantum Dot Lightâ€Emitting Diodes. Small Methods, 2022, 6, e2101030.	8.6	3
4	High-performance flexible resistive random access memory devices based on graphene oxidized with a perpendicular oxidation gradient. Nanoscale, 2021, 13, 2448-2455.	5.6	12
5	Improving flexural strength of UHPC with sustainably synthesized graphene oxide. Nanotechnology Reviews, 2021, 10, 754-767.	5.8	9
6	Aerosol Jet Printing of Graphene and Carbon Nanotube Patterns on Realistically Rugged Substrates. ACS Omega, 2021, 6, 34301-34313.	3.5	11
7	CdPS ₃ nanosheets-based membrane with high proton conductivity enabled by Cd vacancies. Science, 2020, 370, 596-600.	12.6	120
8	Superhigh Electromagnetic Interference Shielding of Ultrathin Aligned Pristine Graphene Nanosheets Film. Advanced Materials, 2020, 32, e1907411.	21.0	310
9	High Yield Controlled Synthesis of Nano-Graphene Oxide by Water Electrolytic Oxidation of Glassy Carbon for Metal-Free Catalysis. ACS Nano, 2019, 13, 9482-9490.	14.6	25
10	Ultrahigh-voltage integrated micro-supercapacitors with designable shapes and superior flexibility. Energy and Environmental Science, 2019, 12, 1534-1541.	30.8	192
11	Choice for graphene as conductive additive for cathode of lithium-ion batteries. Journal of Energy Chemistry, 2019, 30, 19-26.	12.9	49
12	Green synthesis of graphene oxide byÂseconds timescale water electrolytic oxidation. Nature Communications, 2018, 9, 145.	12.8	468
13	An integrated electrode/separator with nitrogen and nickel functionalized carbon hybrids for advanced lithium/polysulfide batteries. Carbon, 2016, 109, 719-726.	10.3	55
14	Toward More Reliable Lithium–Sulfur Batteries: An All-Graphene Cathode Structure. ACS Nano, 2016, 10, 8676-8682.	14.6	246
15	Graphene-based integrated electrodes for flexible lithium ion batteries. 2D Materials, 2015, 2, 024004.	4.4	44
16	Localized polyselenides in a graphene-coated polymer separator for high rate and ultralong life lithium–selenium batteries. Chemical Communications, 2015, 51, 3667-3670.	4.1	63
17	Li–S Batteries: A Flexible Sulfurâ€Grapheneâ€Polypropylene Separator Integrated Electrode for Advanced Li–S Batteries (Adv. Mater. 4/2015). Advanced Materials, 2015, 27, 590-590.	21.0	4
18	A Flexible Sulfurâ€Grapheneâ€Polypropylene Separator Integrated Electrode for Advanced Li–S Batteries. Advanced Materials, 2015, 27, 641-647.	21.0	545

#	Article	IF	CITATIONS
19	A Graphene–Pure‧ulfur Sandwich Structure for Ultrafast, Long‣ife Lithium–Sulfur Batteries. Advanced Materials, 2014, 26, 625-631.	21.0	908
20	25th Anniversary Article: Carbon Nanotube―and Grapheneâ€Based Transparent Conductive Films for Optoelectronic Devices. Advanced Materials, 2014, 26, 1958-1991.	21.0	350
21	Batteries: A Graphene–Pureâ€Sulfur Sandwich Structure for Ultrafast, Longâ€Life Lithium–Sulfur Batteries (Adv. Mater. 4/2014). Advanced Materials, 2014, 26, 664-664.	21.0	21
22	Co3O4 mesoporous nanostructures@graphene membrane as an integrated anode for long-life lithium-ion batteries. Journal of Power Sources, 2014, 255, 52-58.	7.8	98
23	Patterning flexible single-walled carbon nanotube thin films by an ozone gas exposure method. Carbon, 2013, 53, 4-10.	10.3	23
24	Tuning the Electrical and Optical Properties of Graphene by Ozone Treatment for Patterning Monolithic Transparent Electrodes. ACS Nano, 2013, 7, 4233-4241.	14.6	84
25	Fibrous Hybrid of Graphene and Sulfur Nanocrystals for High-Performance Lithium–Sulfur Batteries. ACS Nano, 2013, 7, 5367-5375.	14.6	722
26	A flexible nanostructured sulphur–carbon nanotube cathode with high rate performance for Li-S batteries. Energy and Environmental Science, 2012, 5, 8901.	30.8	468
27	The reduction of graphene oxide. Carbon, 2012, 50, 3210-3228.	10.3	4,247
28	Contamination-free and damage-free patterning of single-walled carbon nanotube transparent conductive films on flexible substrates. Nanoscale, 2011, 3, 4571.	5.6	9
29	Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature Materials, 2011, 10, 424-428.	27.5	3,493
30	Additiveâ€Free Dispersion of Singleâ€Walled Carbon Nanotubes and Its Application for Transparent Conductive Films. Advanced Functional Materials, 2011, 21, 2330-2337.	14.9	51
31	Bulk growth of mono- to few-layer graphene on nickel particles by chemical vapor deposition from methane. Carbon, 2010, 48, 3543-3550.	10.3	96
32	Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon, 2010, 48, 4466-4474.	10.3	1,459
33	Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films. ACS Nano, 2010, 4, 5245-5252.	14.6	869
34	Field Emission of Singleâ€Layer Graphene Films Prepared by Electrophoretic Deposition. Advanced Materials, 2009, 21, 1756-1760.	21.0	624
35	Investigation on the thermal conductivity of HDPE/MWCNT composites by laser pulse method. Science in China Series D: Earth Sciences, 2009, 52, 2767-2772.	0.9	6
36	Metal-Catalyst-Free Growth of Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2009, 131, 2082-2083.	13.7	258

SONGFENG PEI

#	Article	lF	CITATION
37	<i>In Situ</i> Assembly of Multi-Sheeted Buckybooks from Single-Walled Carbon Nanotubes. ACS Nano, 2009, 3, 707-713.	14.6	39
38	The fabrication of a carbon nanotube transparent conductive film by electrophoretic deposition and hot-pressing transfer. Nanotechnology, 2009, 20, 235707.	2.6	79