Benjamin F Schwartz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8740296/publications.pdf Version: 2024-02-01

		26630	26613
189	12,516	56	107
papers	citations	h-index	g-index
192	192	192	10132
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hydrated Electrons in High-Concentration Electrolytes Interact with Multiple Cations: A Simulation Study. Journal of Physical Chemistry B, 2022, 126, 3748-3757.	2.6	9
2	Molecular Dynamics Study of the Thermodynamics of Integer Charge Transfer vs Charge-Transfer Complex Formation in Doped Conjugated Polymers. ACS Applied Materials & Interfaces, 2022, 14, 26988-27001.	8.0	11
3	Understanding the Temperature Dependence and Finite Size Effects in Ab Initio MD Simulations of the Hydrated Electron. Journal of Chemical Theory and Computation, 2022, 18, 4973-4982.	5.3	10
4	Driving Force and Optical Signatures of Bipolaron Formation in Chemically Doped Conjugated Polymers. Advanced Materials, 2021, 33, e2000228.	21.0	21
5	Controlling the Formation of Charge Transfer Complexes in Chemically Doped Semiconducting Polymers. Chemistry of Materials, 2021, 33, 2343-2356.	6.7	40
6	New stygofauna from Texas, USA: three new species of Parabathynellidae (Crustacea: Bathynellacea). Journal of Natural History, 2021, 55, 979-1007.	0.5	3
7	Stygobiont Diversity in the San Marcos Artesian Well and Edwards Aquifer Groundwater Ecosystem, Texas, USA. Diversity, 2021, 13, 234.	1.7	14
8	Ab Initio Simulations of Poorly and Well Equilibrated (CH3CN)n– Cluster Anions: Assigning Experimental Photoelectron Peaks to Surface-Bound Electrons and Solvated Monomer and Dimer Anions. Journal of Physical Chemistry A, 2021, 125, 7685-7693.	2.5	1
9	Understanding the Effects of Confinement and Crystallinity on HJ-Coupling in Conjugated Polymers via Alignment and Isolation in an Oriented Mesoporous Silica Host. Journal of Physical Chemistry C, 2021, 125, 23240-23249.	3.1	4
10	Vibrational Stark Effect Mapping of Polaron Delocalization in Chemically Doped Conjugated Polymers. Chemistry of Materials, 2021, 33, 8489-8500.	6.7	10
11	How Water–Ion Interactions Control the Formation of Hydrated Electron:Sodium Cation Contact Pairs. Journal of Physical Chemistry B, 2021, 125, 13027-13040.	2.6	10
12	Three new microcerberids (Isopoda: Microcerberidae) from subterranean freshwater habitats in Texas, USA. Journal of Natural History, 2021, 55, 2261-2278.	0.5	0
13	The Fluxional Nature of the Hydrated Electron: Energy and Entropy Contributions to Aqueous Electron Free Energies. Journal of Chemical Theory and Computation, 2020, 16, 1263-1270.	5.3	14
14	Evaluating Simple <i>Ab Initio</i> Models of the Hydrated Electron: The Role of Dynamical Fluctuations. Journal of Physical Chemistry B, 2020, 124, 9592-9603.	2.6	14
15	Environmental influences on invertebrate diversity and community composition in the hyporheic zone ecotone in Texas, USA: contrasts between co-occurring epigean taxa and stygobionts. Hydrobiologia, 2020, 847, 3967-3982.	2.0	8
16	The Role of the Solvent in the Condensed-Phase Dynamics and Identity of Chemical Bonds: The Case of the Sodium Dimer Cation in THF. Journal of Physical Chemistry B, 2020, 124, 6603-6616.	2.6	9
17	Tunable Dopants with Intrinsic Counterion Separation Reveal the Effects of Electron Affinity on Dopant Intercalation and Free Carrier Production in Sequentially Doped Conjugated Polymer Films. Advanced Functional Materials, 2020, 30, 2001800.	14.9	53
18	Nonequilibrium Solvent Effects during Photodissociation in Liquids: Dynamical Energy Surfaces, Caging, and Chemical Identity. Journal of Physical Chemistry Letters, 2020, 11, 9230-9238.	4.6	7

#	Article	IF	CITATIONS
19	Dopant-Induced Ordering of Amorphous Regions in Regiorandom P3HT. Journal of Physical Chemistry Letters, 2019, 10, 4929-4934.	4.6	63
20	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry A, 2019, 123, 5837-5848.	2.5	2
21	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry B, 2019, 123, 5973-5984.	2.6	1
22	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry Letters, 2019, 10, 4051-4062.	4.6	2
23	Evaporation vs Solution Sequential Doping of Conjugated Polymers: F ₄ TCNQ Doping of Micrometer-Thick P3HT Films for Thermoelectrics. Journal of Physical Chemistry C, 2019, 123, 22711-22724.	3.1	55
24	Ultrafast transient absorption spectroscopy of doped P3HT films: distinguishing free and trapped polarons. Faraday Discussions, 2019, 216, 339-362.	3.2	28
25	Dodecaboraneâ€Based Dopants Designed to Shield Anion Electrostatics Lead to Increased Carrier Mobility in a Doped Conjugated Polymer. Advanced Materials, 2019, 31, e1805647.	21.0	90
26	Cirolanides wassenichae sp. nov., a freshwater, subterranean Cirolanidae (Isopoda, Cymothoida) with additional records of other species from Texas, United States. Zootaxa, 2019, 4543, 498.	0.5	3
27	Bay-Linked Perylenediimides are Two Molecules in One: Insights from Ultrafast Spectroscopy, Temperature Dependence, and Time-Dependent Density Functional Theory Calculations. Journal of Physical Chemistry C, 2019, 123, 2127-2138.	3.1	8
28	Designing Conjugated Polymers for Molecular Doping: The Roles of Crystallinity, Swelling, and Conductivity in Sequentially-Doped Selenophene-Based Copolymers. Chemistry of Materials, 2019, 31, 73-82.	6.7	56
29	Description of a new genus and species of Bathynellidae (Crustacea: Bathynellacea) from Texas based on morphological and molecular characters. Journal of Natural History, 2018, 52, 29-51.	0.5	5
30	Thermal Equilibration Controls H-Bonding and the Vertical Detachment Energy of Water Cluster Anions. Journal of Physical Chemistry Letters, 2018, 9, 5173-5178.	4.6	11
31	Solvents can control solute molecular identity. Nature Chemistry, 2018, 10, 910-916.	13.6	29
32	Low-Vapor-Pressure Solvent Additives Function as Polymer Swelling Agents in Bulk Heterojunction Organic Photovoltaics. Journal of Physical Chemistry C, 2018, 122, 16574-16588.	3.1	17
33	Processing Methods for Obtaining a Face-On Crystalline Domain Orientation in Conjugated Polymer-Based Photovoltaics. Journal of Physical Chemistry C, 2018, 122, 15078-15089.	3.1	14
34	Sequential Processing: A Rational Route for Bulk Heterojunction Formation via Polymer Swelling. Materials and Energy, 2018, , 309-348.	0.1	1
35	Lacrimacandona n. gen. (Crustacea: Ostracoda: Candonidae) from the Edwards Aquifer, Texas (USA). Zootaxa, 2017, 4277, 261.	0.5	6
36	The Effects of Crystallinity on Charge Transport and the Structure of Sequentially Processed F ₄ TCNQâ€Đoped Conjugated Polymer Films. Advanced Functional Materials, 2017, 27, 1702654.	14.9	190

#	Article	IF	CITATIONS
37	New Physical Insights for Manuscripts on Organic and Perovskite-based Photovoltaics (and Other) Tj ETQq1 1	0.784314 rg	gBT ₀ /Overloc
38	Temperature dependence of the hydrated electron's excited-state relaxation. II. Elucidating the relaxation mechanism through ultrafast transient absorption and stimulated emission spectroscopy. Journal of Chemical Physics, 2017, 147, 074504.	3.0	16
39	Temperature dependence of the hydrated electron's excited-state relaxation. I. Simulation predictions of resonance Raman and pump-probe transient absorption spectra of cavity and non-cavity models. Journal of Chemical Physics, 2017, 147, 074503.	3.0	22
40	Short-Range Electron Correlation Stabilizes Noncavity Solvation of the Hydrated Electron. Journal of Chemical Theory and Computation, 2016, 12, 5117-5131.	5.3	35
41	Time-Resolved Photoelectron Spectroscopy of the Hydrated Electron: Comparing Cavity and Noncavity Models to Experiment. Journal of Physical Chemistry B, 2016, 120, 12604-12614.	2.6	24
42	Structure and Conductivity of Semiconducting Polymer Hydrogels. Journal of Physical Chemistry B, 2016, 120, 6215-6224.	2.6	14
43	Free Energies of Cavity and Noncavity Hydrated Electrons Near the Instantaneous Air/Water Interface. Journal of Physical Chemistry Letters, 2016, 7, 3192-3198.	4.6	35
44	Understanding How Polymer Properties Control OPV Device Performance: Regioregularity, Swelling, and Morphology Optimization Using Random Poly(3-butylthiophene- <i>co</i> -3-octylthiophene) Polymers. Journal of Physical Chemistry C, 2016, 120, 22115-22125.	3.1	14
45	Drift-Diffusion Studies of Compositional Morphology in Bulk Heterojunctions: The Role of the Mixed Phase in Photovoltaic Performance. Physical Review Applied, 2016, 6, .	3.8	11
46	Discovery of a Novel 2,6-Disubstituted Glucosamine Series of Potent and Selective Hexokinase 2 Inhibitors. ACS Medicinal Chemistry Letters, 2016, 7, 217-222.	2.8	64
47	Beyond PCBM: methoxylated 1,4-bisbenzyl[60]fullerene adducts for efficient organic solar cells. Journal of Materials Chemistry A, 2016, 4, 416-424.	10.3	34
48	Drift-Diffusion Modeling of the Effects of Structural Disorder and Carrier Mobility on the Performance of Organic Photovoltaic Devices. Physical Review Applied, 2015, 4, .	3.8	7
49	Sequential Processing for Organic Photovoltaics: Design Rules for Morphology Control by Tailored Semiâ€Orthogonal Solvent Blends. Advanced Energy Materials, 2015, 5, 1402020.	19.5	82
50	Long-lived photoinduced polaron formation in conjugated polyelectrolyte-fullerene assemblies. Science, 2015, 348, 1340-1343.	12.6	53
51	Theory of Current Transients in Planar Semiconductor Devices: Insights and Applications to Organic Solar Cells. Physical Review Applied, 2015, 3, .	3.8	20
52	Extensive Penetration of Evaporated Electrode Metals into Fullerene Films: Intercalated Metal Nanostructures and Influence on Device Architecture. ACS Applied Materials & Interfaces, 2015, 7, 25247-25258.	8.0	40
53	Overcoming Film Quality Issues for Conjugated Polymers Doped with F ₄ TCNQ by Solution Sequential Processing: Hall Effect, Structural, and Optical Measurements. Journal of Physical Chemistry Letters, 2015, 6, 4786-4793.	4.6	175
54	Understanding Local and Macroscopic Electron Mobilities in the Fullerene Network of Conjugated Polymerâ€based Solar Cells: Timeâ€Resolved Microwave Conductivity and Theory. Advanced Functional Materials, 2014, 24, 784-792.	14.9	31

#	Article	IF	CITATIONS
55	Photo-redox activated drug delivery systems operating under two photon excitation in the near-IR. Nanoscale, 2014, 6, 4652-4658.	5.6	43
56	Panoramic View of Electrochemical Pseudocapacitor and Organic Solar Cell Research in Molecularly Engineered Energy Materials (MEEM). Journal of Physical Chemistry C, 2014, 118, 19505-19523.	3.1	19
57	Crystallinity Effects in Sequentially Processed and Blend-Cast Bulk-Heterojunction Polymer/Fullerene Photovoltaics. Journal of Physical Chemistry C, 2014, 118, 18424-18435.	3.1	46
58	Free Energies of Quantum Particles: The Coupled-Perturbed Quantum Umbrella Sampling Method. Journal of Chemical Theory and Computation, 2014, 10, 4661-4671.	5.3	15
59	Comparing Matched Polymer:Fullerene Solar Cells Made by Solution-Sequential Processing and Traditional Blend Casting: Nanoscale Structure and Device Performance. Journal of Physical Chemistry C, 2014, 118, 17413-17425.	3.1	50
60	Electronic Structure and Transition Energies in Polymer–Fullerene Bulk Heterojunctions. Journal of Physical Chemistry C, 2014, 118, 21873-21883.	3.1	48
61	Activation of Snap-Top Capped Mesoporous Silica Nanocontainers Using Two Near-Infrared Photons. Journal of the American Chemical Society, 2013, 135, 14000-14003.	13.7	132
62	Resonance Raman and temperature-dependent electronic absorption spectra of cavity and noncavity models of the hydrated electron. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2712-2717.	7.1	42
63	Ultrafast Studies of Excess Electrons in Liquid Acetonitrile: Revisiting the Solvated Electron/Solvent Dimer Anion Equilibrium. Journal of Physical Chemistry B, 2013, 117, 4216-4221.	2.6	26
64	Self-Assembling Semiconducting Polymers—Rods and Gels from Electronic Materials. ACS Nano, 2013, 7, 962-977.	14.6	25
65	Nature of Excess Electrons in Polar Fluids: Anion-Solvated Electron Equilibrium and Polarized Hole-Burning in Liquid Acetonitrile. Journal of Physical Chemistry Letters, 2013, 4, 1471-1476.	4.6	20
66	Response to "Comment on â€~Going beyond the frozen core approximation: Development of coordinate-dependent pseudopotentials and application to Na 2+'―[J. Chem. Phys. 139, 147101 (2013)]. Journal of Chemical Physics, 2013, 139, 147102.	3.0	0
67	To Be or Not to Be in a Cavity: The Hydrated Electron Dilemma. Journal of Physical Chemistry B, 2013, 117, 14173-14182.	2.6	58
68	Going beyond the frozen core approximation: Development of coordinate-dependent pseudopotentials and application to \${m Na}_2^+\$ Na 2+. Journal of Chemical Physics, 2013, 138, 054110.	3.0	8
69	Photoinduced Charge Carrier Generation and Decay in Sequentially Deposited Polymer/Fullerene Layers: Bulk Heterojunction vs Planar Interface. Journal of Physical Chemistry C, 2012, 116, 7293-7305.	3.1	42
70	Ultrafast Studies of Exciton Migration and Polaron Formation in Sequentially Solution-Processed Conjugated Polymer/Fullerene Quasi-Bilayer Photovoltaics. Journal of Physical Chemistry Letters, 2012, 3, 2281-2287.	4.6	49
71	Crystal-Packing Trends for a Series of 6,9,12,15,18-Pentaaryl-1-hydro[60]fullerenes. Chemistry - A European Journal, 2012, 18, 7418-7433.	3.3	19
72	Simulating the Formation of Sodium:Electron Tight-Contact Pairs: Watching the Solvation of Atoms in Liquids One Molecule at a Time. Journal of Physical Chemistry A, 2011, 115, 5887-5894.	2.5	11

#	Article	IF	CITATIONS
73	Nanometer-Scale Phase Separation and Preferential Solvation in THF–Water Mixtures: Ultrafast Electron Hydration and Recombination Dynamics Following CTTS Excitation of I [–] . Journal of Physical Chemistry Letters, 2011, 2, 2797-2804.	4.6	26
74	Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles. Applied Physics Letters, 2011, 98, .	3.3	138
75	Using Pentaarylfullerenes to Understand Network Formation in Conjugated Polymer-Based Bulk-Heterojunction Solar Cells. Journal of Physical Chemistry C, 2011, 115, 22563-22571.	3.1	22
76	Response to Comments on "Does the Hydrated Electron Occupy a Cavity?― Science, 2011, 331, 1387-1387.	12.6	58
77	First principles multielectron mixed quantum/classical simulations in the condensed phase. II. The charge-transfer-to-solvent states of sodium anions in liquid tetrahydrofuran. Journal of Chemical Physics, 2010, 132, 144102.	3.0	12
78	First principles multielectron mixed quantum/classical simulations in the condensed phase. I. An efficient Fourier-grid method for solving the many-electron problem. Journal of Chemical Physics, 2010, 132, 144101.	3.0	19
79	Watching the Solvation of Atoms in Liquids One Solvent Molecule at a Time. Physical Review Letters, 2010, 104, 233005.	7.8	15
80	How Does a Solvent Affect Chemical Bonds? Mixed Quantum/Classical Simulations with a Full Cl Treatment of the Bonding Electrons. Journal of Physical Chemistry Letters, 2010, 1, 165-169.	4.6	21
81	Second-harmonic generation in conjugated polymer films: A sensitive probe of how bulk polymer crystallinity changes with spin speed. Journal of Chemical Physics, 2010, 133, 044901.	3.0	17
82	Does the Hydrated Electron Occupy a Cavity?. Science, 2010, 329, 65-69.	12.6	212
83	Hybrid conjugated polymer solar cells using patterned GaAs nanopillars. Applied Physics Letters, 2010, 97, 013107.	3.3	60
84	Nature of Sodium Atoms/(Na ⁺ , e ^{â^'}) Contact Pairs in Liquid Tetrahydrofuran. Journal of Physical Chemistry B, 2010, 114, 11535-11543.	2.6	20
85	Searching for solvent cavities via electron photodetachment: The ultrafast charge-transfer-to-solvent dynamics of sodide in a series of ether solvents. Journal of Chemical Physics, 2009, 131, 154506.	3.0	12
86	Quantifying Potential Recharge in Mantled Sinkholes Using ERT. Ground Water, 2009, 47, 370-381.	1.3	12
87	A new route to dual fluorescence: Spectroscopic properties of the valence tautomers of a 3-(2H)-isoquinolinone derivative. Chemical Physics Letters, 2009, 477, 319-324.	2.6	21
88	Improving the Reproducibility of P3HT:PCBM Solar Cells by Controlling the PCBM/Cathode Interface. Journal of Physical Chemistry C, 2009, 113, 18978-18982.	3.1	150
89	Comment on "An electron-water pseudopotential for condensed phase simulation―[J. Chem. Phys. 86, 3462 (1987)]. Journal of Chemical Physics, 2009, 131, 037101; author reply 037102.	3.0	14
90	Reappraising the Need for Bulk Heterojunctions in Polymerâ^'Fullerene Photovoltaics: The Role of Carrier Transport in All-Solution-Processed P3HT/PCBM Bilayer Solar Cells. Journal of Physical Chemistry C, 2009, 113, 20050-20060.	3.1	303

#	Article	IF	CITATIONS
91	What makes a chromophore?. Nature Materials, 2008, 7, 427-428.	27.5	42
92	Quantifying field-scale soil moisture using electrical resistivity imaging. Journal of Hydrology, 2008, 362, 234-246.	5.4	96
93	The roles of the solute and solvent cavities in charge-transfer-to-solvent dynamics: Ultrafast studies of potasside and sodide in diethyl ether. Journal of Chemical Physics, 2008, 129, 134503.	3.0	8
94	Room to Improve Conjugated Polymer-Based Solar Cells: Understanding How Thermal Annealing Affects the Fullerene Component of a Bulk Heterojunction Photovoltaic Device. Journal of Physical Chemistry C, 2008, 112, 18711-18716.	3.1	94
95	The Ultrafast Charge-Transfer-to-Solvent Dynamics of lodide in Tetrahydrofuran. 1. Exploring the Roles of Solvent and Solute Electronic Structure in Condensed-Phase Charge-Transfer Reactions. Journal of Physical Chemistry B, 2008, 112, 483-494.	2.6	31
96	Self-Assembling Fullerenes for Improved Bulk-Heterojunction Photovoltaic Devices. Journal of the American Chemical Society, 2008, 130, 17290-17292.	13.7	107
97	Ultrafast Charge-Transfer-to-Solvent Dynamics of Iodide in Tetrahydrofuran. 2. Photoinduced Electron Transfer to Counterions in Solution. Journal of Physical Chemistry A, 2008, 112, 3530-3543.	2.5	32
98	Linear Response Breakdown in Solvation Dynamics Induced by Atomic Electron-Transfer Reactions. Science, 2008, 321, 1817-1822.	12.6	65
99	The roles of electronic exchange and correlation in charge-transfer-to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase. Journal of Chemical Physics, 2008, 129, 164505.	3.0	27
100	Calibrating Accessâ€ŧube Time Domain Reflectometry Soil Water Measurements in Deep Heterogeneous Soils. Soil Science Society of America Journal, 2008, 72, 917-930.	2.2	8
101	Destruction of amplified spontaneous emission via chemical doping at low-work-function metal/conjugated polymer interfaces. Applied Physics Letters, 2007, 90, 091106.	3.3	14
102	Watching Na Atoms Solvate into (Na+,e-) Contact Pairs:  Untangling the Ultrafast Charge-Transfer-to-Solvent Dynamics of Na- in Tetrahydrofuran (THF). Journal of Physical Chemistry A, 2007, 111, 5144-5157.	2.5	29
103	The Structure of the Hydrated Electron. Part 2. A Mixed Quantum/Classical Molecular Dynamics Embedded Cluster Density Functional Theory:  Singleâ^'Excitation Configuration Interaction Study. Journal of Physical Chemistry A, 2007, 111, 5232-5243.	2.5	51
104	Controlling optical gain in semiconducting polymers with nanoscale chain positioning and alignment. Nature Nanotechnology, 2007, 2, 647-652.	31.5	102
105	Ionic strength and solvent control over the physical structure, electronic properties and superquenching of conjugated polyelectrolytes. Research on Chemical Intermediates, 2007, 33, 125-142.	2.7	17
106	A computationally efficient exact pseudopotential method. I. Analytic reformulation of the Phillips-Kleinman theory. Journal of Chemical Physics, 2006, 125, 074102.	3.0	41
107	Nonadiabatic Molecular Dynamics Simulations of Correlated Electrons in Solution. 2. A Prediction for the Observation of Hydrated Dielectrons with Pumpâ^Probe Spectroscopy. Journal of Physical Chemistry B, 2006, 110, 9692-9697.	2.6	11
108	Full Configuration Interaction Computer Simulation Study of the Thermodynamic and Kinetic Stability of Hydrated Dielectrons. Journal of Physical Chemistry B, 2006, 110, 1006-1014.	2.6	17

#	Article	IF	CITATIONS
109	Nonadiabatic Molecular Dynamics Simulations of Correlated Electrons in Solution. 1. Full Configuration Interaction (CI) Excited-State Relaxation Dynamics of Hydrated Dielectrons. Journal of Physical Chemistry B, 2006, 110, 9681-9691.	2.6	12
110	Exploring the Role of Decoherence in Condensed-Phase Nonadiabatic Dynamics:Â A Comparison of Different Mixed Quantum/Classical Simulation Algorithms for the Excited Hydrated Electron. Journal of Physical Chemistry B, 2006, 110, 20055-20066.	2.6	62
111	Moving solvated electrons with light: Nonadiabatic mixed quantum/classical molecular dynamics simulations of the relocalization of photoexcited solvated electrons in tetrahydrofuran (THF). Journal of Chemical Physics, 2006, 125, 194509.	3.0	18
112	A computationally efficient exact pseudopotential method. II. Application to the molecular pseudopotential of an excess electron interacting with tetrahydrofuran (THF). Journal of Chemical Physics, 2006, 125, 074103.	3.0	13
113	Projections of Quantum Observables onto Classical Degrees of Freedom in Mixed Quantum-Classical Simulations: Understanding Linear Response Failure for the Photoexcited Hydrated Electron. Physical Review Letters, 2006, 97, 130403.	7.8	12
114	Synthesis and Color Tuning Properties of Blue Highly Fluorescent Vinyl Polymers Containing a Pendant Pyrrolopyridazine. Macromolecules, 2005, 38, 4698-4704.	4.8	17
115	Mean-field dynamics with stochastic decoherence (MF-SD): A new algorithm for nonadiabatic mixed quantum/classical molecular-dynamics simulations with nuclear-induced decoherence. Journal of Chemical Physics, 2005, 123, 234106.	3.0	181
116	The role of solvent structure in the absorption spectrum of solvated electrons: Mixed quantum/classical simulations in tetrahydrofuran. Journal of Chemical Physics, 2005, 122, 134506.	3.0	36
117	Exciton-exciton annihilation and the production of interchain species in conjugated polymer films: Comparing the ultrafast stimulated emission and photoluminescence dynamics of MEH-PPV. Physical Review B, 2004, 69, .	3.2	120
118	Elucidating the initial dynamics of electron photodetachment from atoms in liquids using variably-time-delayed resonant multiphoton ionization. Journal of Chemical Physics, 2004, 121, 374.	3.0	11
119	Revisiting the pump–probe polarized transient hole-burning of the hydrated electron: Is its absorption spectrum inhomogeneously broadened?. Chemical Physics Letters, 2004, 396, 359-366.	2.6	33
120	Mixed Quantum/Classical Molecular Dynamics Simulations of the Hydrated Dielectron:  The Role of Exchange in Condensed-Phase Structure, Dynamics, and Spectroscopy. Journal of Physical Chemistry B, 2004, 108, 11760-11773.	2.6	16
121	Mapping out the conduction band under CTTS transitions: the photodetachment quantum yield of sodide (Naâ^') in tetrahydrofuran. Chemical Physics Letters, 2003, 375, 435-443.	2.6	23
122	Understanding Nonequilibrium Solute and Solvent Motions through Molecular Projections:Â Computer Simulations of Solvation Dynamics in Liquid Tetrahydrofuran (THF). Journal of Physical Chemistry B, 2003, 107, 14464-14475.	2.6	32
123	Hidden Breakdown of Linear Response:Â Projections of Molecular Motions in Nonequilibrium Simulations of Solvation Dynamics. Journal of Physical Chemistry A, 2003, 107, 4773-4777.	2.5	36
124	CONJUGATEDPOLYMERS ASMOLECULARMATERIALS: How Chain Conformation and Film Morphology Influence Energy Transfer and Interchain Interactions. Annual Review of Physical Chemistry, 2003, 54, 141-172.	10.8	901
125	The role of electronic symmetry in charge-transfer-to-solvent reactions: Quantum nonadiabatic computer simulation of photoexcited sodium anions. Journal of Chemical Physics, 2003, 119, 11263-11277.	3.0	29
126	Solvent effects on the ultrafast dynamics and spectroscopy of the charge-transfer-to-solvent reaction of sodide. Journal of Chemical Physics, 2003, 118, 5916-5931.	3.0	38

#	Article	IF	CITATIONS
127	Efficient real-space configuration-interaction method for the simulation of multielectron mixed quantum and classical nonadiabatic molecular dynamics in the condensed phase. Journal of Chemical Physics, 2003, 119, 7672-7684.	3.0	15
128	Solvent Control of Electron Transfer Dynamics. Springer Series in Chemical Physics, 2003, , 459-461.	0.2	5
129	Control of an electron transfer reaction using a sequence of femtosecond laser pulses. Springer Series in Chemical Physics, 2003, , 487-489.	0.2	3
130	Nanoscopic interchain aggregate domain formation in conjugated polymer films studied by third harmonic generation near-field scanning optical microscopy. Journal of Chemical Physics, 2002, 117, 6688-6698.	3.0	43
131	Manipulating the Production and Recombination of Electrons during Electron Transfer:  Femtosecond Control of the Charge-Transfer-to-Solvent (CTTS) Dynamics of the Sodium Anion. Journal of the American Chemical Society, 2002, 124, 7622-7634.	13.7	31
132	lonomeric control of interchain interactions, morphology, and the electronic properties of conjugated polymer solutions and films. Journal of Chemical Physics, 2002, 116, 8198-8208.	3.0	70
133	Near-field two-photon nanolithography using an apertureless optical probe. Applied Physics Letters, 2002, 81, 3663-3665.	3.3	108
134	On the insensitivity of the non-adiabatic relaxation of solvated electrons to the details of their local solvent environment. Chemical Physics Letters, 2002, 360, 22-30.	2.6	14
135	The Nature of Interchain Excitations in Conjugated Polymers:  Spatially-Varying Interfacial Solvatochromism of Annealed MEH-PPV Films Studied by Near-Field Scanning Optical Microscopy (NSOM). Journal of Physical Chemistry B, 2002, 106, 9496-9506.	2.6	57
136	Solvent control of electron transfer dynamics. , 2002, , .		0
137	Control of an electron transfer reaction using a sequence of femtosecond pulses. , 2002, , .		0
138	Interchain and intrachain exciton transport in conjugated polymers: ultrafast studies of energy migration in aligned MEH-PPV/mesoporous silica composites. Synthetic Metals, 2001, 116, 35-40.	3.9	87
139	Higher efficiency conjugated polymer-based LEDs by control of polymer film morphology and interactions. Synthetic Metals, 2001, 119, 523-524.	3.9	12
140	The Role of Copper in Topa Quinone Biogenesis and Catalysis, as Probed by Azide Inhibition of a Copper Amine Oxidase from Yeastâ€. Biochemistry, 2001, 40, 2954-2963.	2.5	71
141	How Does the Solvent Control Electron Transfer? Experimental and Theoretical Studies of the Simplest Charge Transfer Reaction. Journal of Physical Chemistry B, 2001, 105, 12230-12241.	2.6	98
142	Near-Field Scanning Optical Microscopy (NSOM) Studies of the Relationship between Interchain Interactions, Morphology, Photodamage, and Energy Transport in Conjugated Polymer Films. Journal of Physical Chemistry B, 2001, 105, 5153-5160.	2.6	82
143	Directional energy migration in an oriented nanometer-scale host/guest composite: semiconducting polymers threaded into mesoporous silica. Microporous and Mesoporous Materials, 2001, 44-45, 445-451.	4.4	13
144	Solution processing of conjugated polymers: the effects of polymer solubility on the morphology and electronic properties of semiconducting polymer films. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 144, 21-30.	3.9	90

#	Article	IF	CITATIONS
145	Optical Control of Electrons During Electron Transfer. Science, 2001, 293, 462-465.	12.6	63
146	Femtosecond Studies of the Charge-Transfer-toSolvent Transition of the Sodium Anion in THF. Springer Series in Chemical Physics, 2001, , 479-481.	0.2	0
147	Ultrafast competition between energy and charge transfer in a functionalized electron donor/fullerene derivative. Chemical Physics Letters, 2000, 327, 253-262.	2.6	78
148	Controlling the Spontaneous Precipitation of Silver Nanoparticles in Sol-Gel Materials. Journal of Sol-Gel Science and Technology, 2000, 19, 249-252.	2.4	41
149	Improving the performance of conjugated polymer-based devices by control of interchain interactions and polymer film morphology. Applied Physics Letters, 2000, 76, 2454-2456.	3.3	181
150	Direct observation of charge-transfer-to-solvent (CTTS) reactions: Ultrafast dynamics of the photoexcited alkali metal anion sodide (Naâ^'). Journal of Chemical Physics, 2000, 112, 9433-9444.	3.0	51
151	Mechanisms of the ultrafast production and recombination of solvated electrons in weakly polar fluids: Comparison of multiphoton ionization and detachment via the charge-transfer-to-solvent transition of Naâ^' in THF. Journal of Chemical Physics, 2000, 113, 11245-11257.	3.0	63
152	Control of Energy Transfer in Oriented Conjugated Polymer-Mesoporous Silica Composites. Science, 2000, 288, 652-656.	12.6	642
153	Crystal Structure at 2.5 Ã Resolution of Zinc-Substituted Copper Amine Oxidase of Hansenula polymorpha Expressed in Escherichia coli,. Biochemistry, 2000, 39, 9709-9717.	2.5	49
154	Nonlinear, Nonpolar Solvation Dynamics in Water:Â The Roles of Electrostriction and Solvent Translation in the Breakdown of Linear Response. Journal of Physical Chemistry B, 2000, 104, 5382-5394.	2.6	85
155	Kinetic Analysis of Oxygen Utilization during Cofactor Biogenesis in a Copper-Containing Amine Oxidase from Yeast. Biochemistry, 2000, 39, 3699-3707.	2.5	73
156	Investigation of Spectroscopic Intermediates during Copper-Binding and TPQ Formation in Wild-Type and Active-Site Mutants of a Copper-Containing Amine Oxidase from Yeast. Biochemistry, 2000, 39, 3690-3698.	2.5	74
157	Controlling Interchain Interactions in Conjugated Polymers:  The Effects of Chain Morphology on Excitonâ^'Exciton Annihilation and Aggregation in MEHâ^'PPV Films. Journal of Physical Chemistry B, 2000, 104, 237-255.	2.6	817
158	Controlling Exciton Transport in Conjugated Polymers: Ultrafast Studies of Aligned MEH-PPV/Mesoporous Silica Composite Materials. , 2000, , .		0
159	Phthalocyanineâ^'Azacrownâ^'Fullerene Multicomponent System:Â Synthesis, Photoinduced Processes, and Electrochemistry#. Organic Letters, 1999, 1, 1807-1810.	4.6	99
160	Conjugated polymer aggregates in solution: Control of interchain interactions. Journal of Chemical Physics, 1999, 110, 4068-4078.	3.0	709
161	Role of Nonpolar Forces in Aqueous Solvation:  Computer Simulation Study of Solvation Dynamics in Water Following Changes in Solute Size, Shape, and Charge. Journal of Physical Chemistry B, 1999, 103, 5570-5580.	2.6	50
162	Ultrafast intensity-dependent stimulated emission in conjugated polymers: The mechanism for line-narrowing. Chemical Physics Letters, 1998, 288, 576-584.	2.6	34

#	Article	IF	CITATIONS
163	Relationship between Conserved Consensus Site Residues and the Productive Conformation for the TPQ Cofactor in a Copper-Containing Amine Oxidase from Yeast. Biochemistry, 1998, 37, 16591-16600.	2.5	41
164	Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures. Optics Letters, 1998, 23, 1745.	3.3	159
165	"Plastic―lasers: Comparison of gain narrowing with a soluble semiconducting polymer in waveguides and microcavities. Applied Physics Letters, 1997, 70, 3191-3193.	3.3	112
166	New Developments in the Photonic Applications of Conjugated Polymers. Accounts of Chemical Research, 1997, 30, 430-436.	15.6	485
167	Observation of stimulated emission and ultrafast transient absorption dynamics from a novel alkyl-substituted PPV. Synthetic Metals, 1997, 84, 663-664.	3.9	1
168	Conjugated polymers as solid-state laser materials. Synthetic Metals, 1997, 91, 35-40.	3.9	61
169	Plastic lasers: Semiconducting polymers as a new class of solid-state laser materials. Synthetic Metals, 1997, 84, 455-462.	3.9	148
170	Quantum decoherence: a consistent histories treatment of condensed-phase non-adiabatic quantum molecular dynamics. Computational and Theoretical Chemistry, 1997, 389, 203-216.	1.5	24
171	Ultrafast studies of stimulated emission and gain in solid films of conjugated polymers. Chemical Physics Letters, 1997, 265, 327-333.	2.6	66
172	Quantum decoherence and the isotope effect in condensed phase nonadiabatic molecular dynamics simulations. Journal of Chemical Physics, 1996, 104, 5942-5955.	3.0	331
173	Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals. Chemical Physics Letters, 1996, 256, 424-430.	2.6	295
174	The isotope effect in solvation dynamics and nonadiabatic relaxation: A quantum simulation study of the photoexcited solvated electron in D2O. Journal of Chemical Physics, 1996, 105, 6997-7010.	3.0	73
175	The interplay of dielectric and mechanical relaxation in solvation dynamics. Studies in Physical and Theoretical Chemistry, 1995, 83, 23-30.	0.0	1
176	Ultrafast dynamics of sterically hindered tetraphenylmethylbutadiene in liquids. Chemical Physics Letters, 1995, 235, 471-478.	2.6	12
177	The interplay of dielectric and mechanical relaxation in solvation dynamics. Journal of Molecular Liquids, 1995, 65-66, 23-30.	4.9	19
178	An Exploration of the Relationship between Solvation Dynamics and Spectrally Determined Solvent Response Functions by Computer Simulation. The Journal of Physical Chemistry, 1995, 99, 2953-2958.	2.9	37
179	Dynamic Elements of Transient Spectral Hole Burning of the Hydrated Electron. The Journal of Physical Chemistry, 1994, 98, 4489-4492.	2.9	51
180	Hydrated electrons as a probe of local anisotropy: Simulations of ultrafast polarization-dependent spectral hole burning. Physical Review Letters, 1994, 72, 3282-3285.	7.8	68

#	Article	IF	CITATIONS
181	Aqueous solvation dynamics with a quantum mechanical Solute: Computer simulation studies of the photoexcited hydrated electron. Journal of Chemical Physics, 1994, 101, 6902-6916.	3.0	196
182	Pump–probe spectroscopy of the hydrated electron: A quantum molecular dynamics simulation. Journal of Chemical Physics, 1994, 101, 6917-6926.	3.0	124
183	Calculated photon echo signals for the aqueous solvated electron. Chemical Physics Letters, 1994, 229, 443-448.	2.6	27
184	Femtosecond studies of hydrated electron recombination following multiphoton ionization at 390 nm. Chemical Physics Letters, 1994, 231, 504-510.	2.6	54
185	Excited state spectra and dynamics of phenyl-substituted butadienes. The Journal of Physical Chemistry, 1994, 98, 60-67.	2.9	23
186	The Molecular Basis of Solvent Caging. , 1994, , 235-248.		21
187	Direct femtosecond measurements of single collision dominated geminate recombination times of small molecules in liquids. Chemical Physics Letters, 1993, 203, 503-508.	2.6	123
188	Direct observation of fast proton transfer: femtosecond photophysics of 3-hydroxyflavone. The Journal of Physical Chemistry, 1992, 96, 3591-3598.	2.9	246
189	Ultrafast studies of photochromic spiropyrans in solution. Journal of the American Chemical Society, 1992, 114, 10921-10927.	13.7	136