
Guping Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8739717/publications.pdf Version: 2024-02-01

CUDING TANG

#	Article	IF	CITATIONS
1	Metal (Au)-Decorated Chitosan- <scp>l</scp> -Arginine Polymeric Vector for Codelivery of Gefitinib and miR125b for Lung Cancer Therapy. ACS Applied Polymer Materials, 2022, 4, 1675-1687.	4.4	11
2	Polymorphs and Pseudopolymorphs of Lenvatinib Mesylate: Crystal Structure, Equilibrium Solubility, and Stability Study. Crystal Growth and Design, 2022, 22, 4421-4430.	3.0	5
3	AlEgenâ€Lipid Conjugate for Rapid Labeling of Neutrophils and Monitoring of Their Behavior. Angewandte Chemie - International Edition, 2021, 60, 3175-3181.	13.8	9
4	AlEgenâ€Lipid Conjugate for Rapid Labeling of Neutrophils and Monitoring of Their Behavior. Angewandte Chemie, 2021, 133, 3212-3218.	2.0	3
5	Metabolically engineered bacteria as light-controlled living therapeutics for anti-angiogenesis tumor therapy. Materials Horizons, 2021, 8, 1454-1460.	12.2	27
6	Two polymorphs of remdesivir: crystal structure, solubility, and pharmacokinetic study. CrystEngComm, 2021, 23, 2923-2927.	2.6	5
7	Chitosan-derived nanoparticles impede signal transduction in T790M lung cancer therapy. Biomaterials Science, 2021, 9, 7412-7419.	5.4	6
8	Cyclodextrin-based host-guest complexes loaded with regorafenib for colorectal cancer treatment. Nature Communications, 2021, 12, 759.	12.8	61
9	Structural Insights into the Host–Guest Complexation between β-Cyclodextrin and Bio-Conjugatable Adamantane Derivatives. Molecules, 2021, 26, 2412.	3.8	8
10	Impact of Crystal Habit on the Dissolution Rate and In Vivo Pharmacokinetics of Sorafenib Tosylate. Molecules, 2021, 26, 3469.	3.8	12
11	Hydrogen Bonds, Topologies, Energy Frameworks and Solubilities of Five Sorafenib Salts. International Journal of Molecular Sciences, 2021, 22, 6682.	4.1	3
12	In Vitro Anticancer Activity of Nanoformulated Mono―and Diâ€nuclear Pt Compounds. Chemistry - an Asian Journal, 2021, 16, 2993-3000.	3.3	1
13	Co-Crystals of Resveratrol and Polydatin with L-Proline: Crystal Structures, Dissolution Properties, and In Vitro Cytotoxicities. Molecules, 2021, 26, 5722.	3.8	5
14	Enhancing the Physiochemical Properties of Puerarin via L-Proline Co-Crystallization: Synthesis, Characterization, and Dissolution Studies of Two Phases of Pharmaceutical Co-Crystals. International Journal of Molecular Sciences, 2021, 22, 928.	4.1	11
15	Investigation of Solubility Behavior of Canagliflozin Hydrate Crystals Combining Crystallographic and Hirshfeld Surface Calculations. Molecules, 2021, 26, 298.	3.8	5
16	Reconstructed chitosan with alkylamine for enhanced gene delivery by promoting endosomal escape. Carbohydrate Polymers, 2020, 227, 115339.	10.2	31
17	A supramolecular co-delivery strategy for combined breast cancer treatment and metastasis prevention. Chinese Chemical Letters, 2020, 31, 1153-1158.	9.0	34
18	Bioengineering Bacterial Vesicle-Coated Polymeric Nanomedicine for Enhanced Cancer Immunotherapy and Metastasis Prevention. Nano Letters, 2020, 20, 11-21.	9.1	175

#	Article	IF	CITATIONS
19	Reverting chemoresistance of targeted agents by a ultrasoluble dendritic nanocapsule. Journal of Controlled Release, 2020, 317, 67-77.	9.9	6
20	Duo of (–)-epigallocatechin-3-gallate and doxorubicin loaded by polydopamine coating ZIF-8 in the regulation of autophagy for chemo-photothermal synergistic therapy. Biomaterials Science, 2020, 8, 1380-1393.	5.4	37
21	Block copolymer [(<scp> </scp> -GluA-5-BE)- <i>b</i> -(<scp> </scp> -AspA-4-BE)]-based nanoflower capsules with thermosensitive morphology and pH-responsive drug release for cancer therapy. Journal of Materials Chemistry B, 2020, 8, 9258-9268.	5.8	13
22	HClOâ€Activated Fluorescence and Photosensitization from an AlE Nanoprobe for Imageâ€Guided Bacterial Ablation in Phagocytes. Advanced Materials, 2020, 32, e2005222.	21.0	68
23	Montmorillonite-Enveloped Zeolitic Imidazolate Framework as a Nourishing Oral Nano-Platform for Gastrointestinal Drug Delivery. ACS Applied Materials & Interfaces, 2020, 12, 49431-49441.	8.0	33
24	Solventâ€Assisted [(Glycine)â€{MP‣iO ₂ NPs)] Aggregate for Drug Loading and Cancer Therapy. ChemistrySelect, 2020, 5, 8221-8232.	1.5	12
25	Surface functionalized porous nanomaterials for theranostics. AIP Conference Proceedings, 2020, , .	0.4	1
26	A supramolecular platform for controlling and optimizing molecular architectures of siRNA targeted delivery vehicles. Science Advances, 2020, 6, eabc2148.	10.3	29
27	Tumor-triggered personalized microRNA cocktail therapy for hepatocellular carcinoma. Biomaterials Science, 2020, 8, 6579-6591.	5.4	14
28	On the Single-Crystal Structure of Tenofovir Alafenamide Mono-Fumarate: A Metastable Phase Featuring a Mixture of Co-Crystal and Salt. International Journal of Molecular Sciences, 2020, 21, 9213.	4.1	1
29	Design and tuning of ionic liquid–based HNO donor through intramolecular hydrogen bond for efficient inhibition of tumor growth. Science Advances, 2020, 6, .	10.3	20
30	A versatile ultrafine and super-absorptive H ⁺ -modified montmorillonite: application for metabolic syndrome intervention and gastric mucosal protection. Biomaterials Science, 2020, 8, 3370-3380.	5.4	9
31	A zipped-up tunable metal coordinated cationic polymer for nanomedicine. Journal of Materials Chemistry B, 2020, 8, 1350-1358.	5.8	4
32	A Hybrid Eukaryotic–Prokaryotic Nanoplatform with Photothermal Modality for Enhanced Antitumor Vaccination. Advanced Materials, 2020, 32, e1908185.	21.0	136
33	Mesoporous polydopamine with built-in plasmonic core: Traceable and NIR triggered delivery of functional proteins. Biomaterials, 2020, 238, 119847.	11.4	54
34	Mesoporous Rod‣ike Metalâ€Organic Framework with Optimal Tumor Targeting Properties for Enhanced Activatable Photodynamic Therapy. Advanced Therapeutics, 2020, 3, 2000011.	3.2	6
35	Nanomedicine Fabricated from A Boron-dipyrromethene (BODIPY)-Embedded Amphiphilic Copolymer for Photothermal-Enhanced Chemotherapy. ACS Biomaterials Science and Engineering, 2019, 5, 4463-4473.	5.2	16
36	A PEGylated megamer-based microRNA delivery system activatable by stepwise microenvironment stimulation. Chemical Communications, 2019, 55, 9363-9366.	4.1	14

#	Article	IF	CITATIONS
37	Annular Mesoporous Carbonaceous Nanospheres from Biomass-Derived Building Units with Enhanced Biological Interactions. Chemistry of Materials, 2019, 31, 7186-7191.	6.7	28
38	Surface-Layer Protein-Enhanced Immunotherapy Based on Cell Membrane-Coated Nanoparticles for the Effective Inhibition of Tumor Growth and Metastasis. ACS Applied Materials & Interfaces, 2019, 11, 9850-9859.	8.0	73
39	Enhanced antitumour effect for hepatocellular carcinoma in the advanced stage using a cyclodextrin-sorafenib-chaperoned inclusion complex. Biomaterials Science, 2019, 7, 4758-4768.	5.4	8
40	Spontaneous single-crystal to single-crystal transition with self-healing cracks involving solvent exchange. CrystEngComm, 2019, 21, 1102-1106.	2.6	11
41	Macrocyclic Compounds for Drug and Gene Delivery in Immune-Modulating Therapy. International Journal of Molecular Sciences, 2019, 20, 2097.	4.1	35
42	Targeted Codelivery of Docetaxel and Atg7 siRNA for Autophagy Inhibition and Pancreatic Cancer Treatment. ACS Applied Bio Materials, 2019, 2, 1168-1176.	4.6	9
43	Isomorphous Crystals Formed by the Similar Supramolecular Motifs in Sorafenib Hydrochloride and Regorafenib Hydrochloride Salts. Crystals, 2019, 9, 649.	2.2	9
44	Solvent assisted size effect on AuNPs and significant inhibition on K562 cells. RSC Advances, 2019, 9, 33931-33940.	3.6	15
45	Therapeutic polymeric nanomedicine: GSH-responsive release promotes drug release for cancer synergistic chemotherapy. RSC Advances, 2019, 9, 37232-37240.	3.6	11
46	Cationic Polymerâ€Mediated CRISPR/Cas9 Plasmid Delivery for Genome Editing. Macromolecular Rapid Communications, 2019, 40, e1800068.	3.9	72
47	Anhydrates and hemihydrate of tasimelteon: Synthesis, structure, and pharmacokinetic study. Journal of Pharmaceutical and Biomedical Analysis, 2018, 151, 235-243.	2.8	3
48	Reactive oxygen species (ROS)-responsive nanomedicine for RNAi-based cancer therapy. Nanoscale, 2018, 10, 203-214.	5.6	55
49	A Phytochemical-Based Copolymer Derived from Coriolus versicolor Polysaccharopeptides for Gene Delivery. Molecules, 2018, 23, 2273.	3.8	4
50	Synthesis of 3D N-doped graphene/carbon nanotube hybrids with encapsulated Ni NPs and their catalytic application in the hydrogenation of nitroarenes. Catalysis Science and Technology, 2018, 8, 4858-4863.	4.1	21
51	Pancreatic Cancer: Targeted Coâ€delivery of PTX and TR3 siRNA by PTP Peptide Modified Dendrimer for the Treatment of Pancreatic Cancer (Small 2/2017). Small, 2017, 13, .	10.0	2
52	Redoxâ€Activatable ATPâ€Depleting Micelles with Dual Modulation Characteristics for Multidrugâ€Resistant Cancer Therapy. Advanced Healthcare Materials, 2017, 6, 1601293.	7.6	43
53	Evaluation of molecular chaperone drug function: Regorafenib and β-cyclodextrins. Colloids and Surfaces B: Biointerfaces, 2017, 153, 61-68.	5.0	11
54	Cardiovascular toxicity assessment of poly (ethylene imine)- based cationic polymers on zebrafish model. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 768-780.	3.5	15

#	Article	IF	CITATIONS
55	Supramolecular β-Sheets Stabilized Protein Nanocarriers for Drug Delivery and Gene Transfection. ACS Nano, 2017, 11, 4528-4541.	14.6	52
56	A Cooperative Dimensional Strategy for Enhanced Nucleusâ€Targeted Delivery of Anticancer Drugs. Advanced Functional Materials, 2017, 27, 1700339.	14.9	66
57	Drug Delivery: A Cooperative Dimensional Strategy for Enhanced Nucleusâ€Targeted Delivery of Anticancer Drugs (Adv. Funct. Mater. 24/2017). Advanced Functional Materials, 2017, 27, .	14.9	0
58	Targeting ETS1 with RNAi-based supramolecular nanoassemblies for multidrug-resistant breast cancer therapy. Journal of Controlled Release, 2017, 253, 110-121.	9.9	43
59	Lanthanide-integrated supramolecular polymeric nanoassembly with multiple regulation characteristics for multidrug-resistant cancer therapy. Biomaterials, 2017, 129, 83-97.	11.4	37
60	Folate receptor mediated genetic modification of human mesenchymal stem cells via folic acid-polyethylenimine-grafted poly(N-3-hydroxypropyl)aspartamide. Clinical Hemorheology and Microcirculation, 2017, 67, 279-295.	1.7	2
61	Nanoparticle-coated as Oral DNA Vaccines for Cancer Immunotherapy. Journal of Controlled Release, 2017, 259, e179.	9.9	0
62	Supramolecular Nanomedicine Constructed from Cucurbit[8]uril-Based Amphiphilic Brush Copolymer for Cancer Therapy. ACS Applied Materials & Interfaces, 2017, 9, 44392-44401.	8.0	71
63	Targeted Coâ€delivery of PTX and TR3 siRNA by PTP Peptide Modified Dendrimer for the Treatment of Pancreatic Cancer. Small, 2017, 13, 1602697.	10.0	52
64	Thermo-sensitive poly(VCL-4VP-NVP) ionic microgels: synthesis, cytotoxicity, hemocompatibility, and sustained release of anti-inflammatory drugs. Materials Chemistry Frontiers, 2017, 1, 369-379.	5.9	10
65	Enhanced adsorbability and photocatalytic activity of TiO 2 -graphene composite for polycyclic aromatic hydrocarbons removal in aqueous phase. Colloids and Surfaces B: Biointerfaces, 2017, 150, 68-77.	5.0	75
66	Chronic polycyclic aromatic hydrocarbon exposure causes DNA damage and genomic instability in lung epithelial cells. Oncotarget, 2017, 8, 79034-79045.	1.8	33
67	Cationic pillar[6]arene/ATP host–guest recognition: selectivity, inhibition of ATP hydrolysis, and application in multidrug resistance treatment. Chemical Science, 2016, 7, 4073-4078.	7.4	139
68	Pillar[5]arene-based amphiphilic supramolecular brush copolymers: fabrication, controllable self-assembly and application in self-imaging targeted drug delivery. Polymer Chemistry, 2016, 7, 6178-6188.	3.9	125
69	A redox-sensitive, oligopeptide-guided, self-assembling, and efficiency-enhanced (ROSE) system for functional delivery of microRNA therapeutics for treatment of hepatocellular carcinoma. Biomaterials, 2016, 104, 192-200.	11.4	37
70	Engineering bioinspired bacteria-adhesive clay nanoparticles with a membrane-disruptive property for the treatment of Helicobacter pylori infection. Nanoscale, 2016, 8, 16486-16498.	5.6	33
71	Tetraphenylethene-based highly emissive metallacage as a component of theranostic supramolecular nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13720-13725.	7.1	161
72	Redox-Activated Light-Up Nanomicelle for Precise Imaging-Guided Cancer Therapy and Real-Time Pharmacokinetic Monitoring. ACS Nano, 2016, 10, 11385-11396.	14.6	65

#	Article	IF	CITATIONS
73	Controlling amphiphilic copolymer self-assembly morphologies based on macrocycle/anion recognition and nucleotide-induced payload release. Chemical Science, 2016, 7, 6006-6014.	7.4	42
74	A pillar[5]arene-based [2]rotaxane lights up mitochondria. Chemical Science, 2016, 7, 3017-3024.	7.4	153
75	A boron difluoride dye showing the aggregation-induced emission feature and high sensitivity to intra- and extra-cellular pH changes. Chemical Communications, 2016, 52, 541-544.	4.1	21
76	Structureâ€Invertible Nanoparticles for Triggered Coâ€Delivery of Nucleic Acids and Hydrophobic Drugs for Combination Cancer Therapy. Advanced Functional Materials, 2015, 25, 3380-3392.	14.9	78
77	Facile construction of fluorescent polymeric aggregates with various morphologies by self-assembly of supramolecular amphiphilic graft copolymers. Polymer Chemistry, 2015, 6, 5021-5025.	3.9	38
78	Engineering Nanoparticle-Coated Bacteria as Oral DNA Vaccines for Cancer Immunotherapy. Nano Letters, 2015, 15, 2732-2739.	9.1	213
79	Redox-Responsive Amphiphilic Macromolecular [2]Pseudorotaxane Constructed from a Water-Soluble Pillar[5]arene and a Paraquat-Containing Homopolymer. ACS Macro Letters, 2015, 4, 996-999.	4.8	59
80	Supramolecular enhancement of aggregation-induced emission and its application in cancer cell imaging. Journal of Materials Chemistry C, 2014, 2, 6609-6617.	5.5	87
81	Restoration of chemosensitivity by multifunctional micelles mediated by P-gp siRNA to reverse MDR. Biomaterials, 2014, 35, 8621-8634.	11.4	69
82	Multifunctional cationic polymer decorated and drug intercalated layered silicate (NLS) for early gastric cancer prevention. Biomaterials, 2014, 35, 3298-3308.	11.4	24
83	Synergistic Enhancement of Lung Cancer Therapy Through Nanocarrierâ€Mediated Sequential Delivery of Superantigen and Tyrosin Kinase Inhibitor. Advanced Functional Materials, 2014, 24, 5482-5492.	14.9	17
84	FGFR-targeted gene delivery mediated by supramolecular assembly between β-cyclodextrin-crosslinked PEI and redox-sensitive PEG. Biomaterials, 2013, 34, 6482-6494.	11.4	138
85	A Sugar-Functionalized Amphiphilic Pillar[5]arene: Synthesis, Self-Assembly in Water, and Application in Bacterial Cell Agglutination. Journal of the American Chemical Society, 2013, 135, 10310-10313.	13.7	306
86	Intracellular pathways and nuclear localization signal peptide-mediated gene transfection by cationic polymeric nanovectors. Biomaterials, 2012, 33, 1135-1145.	11.4	67
87	Synergistic treatment of ovarian cancer by co-delivery of survivin shRNA and paclitaxel via supramolecular micellar assembly. Biomaterials, 2012, 33, 6580-6591.	11.4	114
88	Polyethylene glycolâ€polyethylenimineâ€ŧetrachloroplatinum (IV): A novel conjugate with good abilities of antitumor and gene delivery. Journal of Applied Polymer Science, 2012, 123, 1509-1517.	2.6	4
89	Low molecular weight polyethylenimine cross-linked by 2-hydroxypropyl-Î ³ -cyclodextrin coupled to peptide targeting HER2 as a gene delivery vector. Biomaterials, 2010, 31, 1830-1838.	11.4	98
90	Construction of a Star-Shaped Copolymer as a Vector for FGF Receptor-Mediated Gene Delivery In Vitro and In Vivo. Biomacromolecules, 2010, 11, 2221-2229.	5.4	48

#	Article	IF	CITATIONS
91	Polyethyleneimine-grafted poly(N-3-hydroxypropyl)aspartamide as a biodegradable gene vector for efficient gene transfection. Soft Matter, 2010, 6, 955.	2.7	24
92	A novel nonviral gene delivery vector: Lowâ€molecularâ€weight polyethylenimineâ€ <i>graft</i> â€ovalbumin. Journal of Applied Polymer Science, 2009, 114, 3744-3750.	2.6	4
93	FGF Receptor-mediated Gene Delivery using Ligands Coupled to Polyethylenimine. Journal of Biomaterials Applications, 2007, 22, 163-180.	2.4	28
94	Two novel non-viral gene delivery vectors: low molecular weight polyethylenimine cross-linked by (2-hydroxypropyl)-β-cyclodextrin or (2-hydroxypropyl)-γ-cyclodextrin. Chemical Communications, 2006, , 2382-2384.	4.1	74