Xin Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8739513/publications.pdf

Version: 2024-02-01

10445 23567 23,598 137 58 139 h-index citations g-index papers 144 144 144 31238 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 2012, 485, 635-641.	27.8	2,860
2	Taxonomic structure and functional association of foxtail millet root microbiome. GigaScience, 2017, 6, 1-12.	6.4	1,228
3	Genome sequence of cultivated Upland cotton (GossypiumÂhirsutum TM-1) provides insights into genome evolution. Nature Biotechnology, 2015, 33, 524-530.	17.5	1,064
4	The gut microbiome in atherosclerotic cardiovascular disease. Nature Communications, 2017, 8, 845.	12.8	1,029
5	Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nature Genetics, 2010, 42, 1053-1059.	21.4	987
6	Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nature Biotechnology, 2012, 30, 105-111.	17.5	818
7	The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genetics, 2016, 48, 438-446.	21.4	761
8	The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nature Biotechnology, 2011, 29, 735-741.	17.5	699
9	Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnology, 2012, 30, 549-554.	17.5	636
10	Maize HapMap2 identifies extant variation from a genome in flux. Nature Genetics, 2012, 44, 803-807.	21.4	577
11	An atlas of the protein-coding genes in the human, pig, and mouse brain. Science, 2020, 367, .	12.6	517
12	Single-Cell Exome Sequencing and Monoclonal Evolution of a JAK2-Negative Myeloproliferative Neoplasm. Cell, 2012, 148, 873-885.	28.9	503
13	Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra) Tj ETQq1 1	10.784314 17.5	4 rgBT /Over
14	A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nature Genetics, 2013, 45, 1510-1515.	21.4	472
15	The sheep genome illuminates biology of the rumen and lipid metabolism. Science, 2014, 344, 1168-1173.	12.6	436
16	The <i>Symbiodinium kawagutii</i> genome illuminates dinoflagellate gene expression and coral symbiosis. Science, 2015, 350, 691-694.	12.6	430
17	A reference gene catalogue of the pig gut microbiome. Nature Microbiology, 2016, 1, 16161.	13.3	416
18	The genome sequence of the orchid Phalaenopsis equestris. Nature Genetics, 2015, 47, 65-72.	21.4	413

#	Article	IF	Citations
19	1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nature Biotechnology, 2019, 37, 179-185.	17.5	402
20	Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nature Plants, 2018, 4, 460-472.	9.3	391
21	Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nature Biotechnology, 2017, 35, 969-976.	17.5	356
22	Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nature Biotechnology, 2013, 31, 759-765.	17.5	340
23	Structural genomic changes underlie alternative reproductive strategies in the ruff (Philomachus) Tj ETQq1 1 0.78	4314 rgBT 21.4	JOyerlock
24	Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science, 2018, 361, .	12.6	339
25	Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nature Communications, 2014, 5, 4340.	12.8	332
26	Genomes of Subaerial Zygnematophyceae Provide Insights into Land Plant Evolution. Cell, 2019, 179, 1057-1067.e14.	28.9	320
27	The structure and function of the global citrus rhizosphere microbiome. Nature Communications, 2018, 9, 4894.	12.8	304
28	Redefining the structural motifs that determine <scp>RNA</scp> binding and <scp>RNA</scp> editing by pentatricopeptide repeat proteins in land plants. Plant Journal, 2016, 85, 532-547.	5.7	267
29	Draft genome of the living fossil Ginkgo biloba. GigaScience, 2016, 5, 49.	6.4	232
30	A reference human genome dataset of the BGISEQ-500 sequencer. GigaScience, 2017, 6, 1-9.	6.4	219
31	Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nature Genetics, 2019, 51, 857-864.	21.4	219
32	Allelic diversity in an NLR gene <i>BPH9</i> enables rice to combat planthopper variation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12850-12855.	7.1	196
33	Whole-genome bisulfite sequencing of multiple individuals reveals complementary roles of promoter and gene body methylation in transcriptional regulation. Genome Biology, 2014, 15, 408.	8.8	173
34	10KP: A phylodiverse genome sequencing plan. GigaScience, 2018, 7, 1-9.	6.4	169
35	The pearl oyster Pinctada fucata martensii genome and multi-omic analyses provide insights into biomineralization. GigaScience, 2017, 6, 1-12.	6.4	160
36	Bph6 encodes an exocyst-localized protein and confers broad resistance to planthoppers in rice. Nature Genetics, 2018, 50, 297-306.	21.4	158

#	Article	IF	Citations
37	Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity. Nature Communications, 2019, 10, 470.	12.8	156
38	TGS-GapCloser: A fast and accurate gap closer for large genomes with low coverage of error-prone long reads. GigaScience, 2020, 9, .	6.4	156
39	Landscape of genomic diversity and trait discovery in soybean. Scientific Reports, 2016, 6, 23598.	3.3	151
40	Genomes of early-diverging streptophyte algae shed light on plant terrestrialization. Nature Plants, 2020, 6, 95-106.	9.3	146
41	The genetic basis for ecological adaptation of the Atlantic herring revealed by genome sequencing. ELife, 2016, 5, .	6.0	143
42	Mudskipper genomes provide insights into the terrestrial adaptation of amphibious fishes. Nature Communications, 2014, 5, 5594.	12.8	135
43	Comparative population genomics reveals the domestication history of the peach, Prunus persica, and human influences on perennial fruit crops. Genome Biology, 2014, 15, 415.	8.8	134
44	The draft genomes of five agriculturally important African orphan crops. GigaScience, 2019, 8, .	6.4	108
45	A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature, 2021, 599, 622-627.	27.8	106
46	Resequencing 545 ginkgo genomes across the world reveals the evolutionary history of the living fossil. Nature Communications, 2019, 10, 4201.	12.8	99
47	Deciphering the Composition and Functional Profile of the Microbial Communities in Chinese Moutai Liquor Starters. Frontiers in Microbiology, 2019, 10, 1540.	3.5	98
48	The <i>Tarenaya hassleriana</i> Genome Provides Insight into Reproductive Trait and Genome Evolution of Crucifers Â. Plant Cell, 2013, 25, 2813-2830.	6.6	95
49	Baiji genomes reveal low genetic variability and new insights into secondary aquatic adaptations. Nature Communications, 2013, 4, 2708.	12.8	93
50	Two divergent haplotypes from a highly heterozygous lychee genome suggest independent domestication events for early and late-maturing cultivars. Nature Genetics, 2022, 54, 73-83.	21.4	88
51	A chromosome-level assembly of the Atlantic herring genomeâ€"detection of a supergene and other signals of selection. Genome Research, 2019, 29, 1919-1928.	5.5	84
52	The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants. Nature Ecology and Evolution, 2020, 4, 1220-1231.	7.8	84
53	Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning. Nature Communications, 2021, 12, 3238.	12.8	81
54	The Cycas genome and the early evolution of seed plants. Nature Plants, 2022, 8, 389-401.	9.3	80

#	Article	IF	Citations
55	A western Sahara centre of domestication inferred from pearl millet genomes. Nature Ecology and Evolution, 2018, 2, 1377-1380.	7.8	78
56	Recent breeding programs enhanced genetic diversity in both desi and kabuli varieties of chickpea (Cicer arietinum L.). Scientific Reports, 2016, 6, 38636.	3.3	77
57	The sacred lotus genome provides insights into the evolution of flowering plants. Plant Journal, 2013, 76, 557-567.	5.7	7 5
58	The genetic architecture of floral traits in the woody plant Prunus mume. Nature Communications, 2018, 9, 1702.	12.8	73
59	African Orphan Crops Consortium (AOCC): status of developing genomic resources for African orphan crops. Planta, 2019, 250, 989-1003.	3.2	7 3
60	The Chromosome-Based Rubber Tree Genome Provides New Insights into Spurge Genome Evolution and Rubber Biosynthesis. Molecular Plant, 2020, 13, 336-350.	8.3	73
61	Genomic and transcriptomic analysis unveils population evolution and development of pesticide resistance in fall armyworm Spodoptera frugiperda. Protein and Cell, 2022, 13, 513-531.	11.0	72
62	Integrated transcriptome, small <scp>RNA</scp> and degradome sequencing approaches provide insights into Ascochyta blight resistance in chickpea. Plant Biotechnology Journal, 2019, 17, 914-931.	8.3	66
63	Patient iPSC-Derived Neurons for Disease Modeling of Frontotemporal Dementia with Mutation in CHMP2B. Stem Cell Reports, 2017, 8, 648-658.	4.8	65
64	Genome-wide determination of on-target and off-target characteristics for RNA-guided DNA methylation by dCas9 methyltransferases. GigaScience, 2018, 7, 1-19.	6.4	64
65	Whole-genome resequencing of 445 Lactuca accessions reveals the domestication history of cultivated lettuce. Nature Genetics, 2021, 53, 752-760.	21.4	64
66	Genome-Wide Characterization of Nonreference Transposons Reveals Evolutionary Propensities of Transposons in Soybean. Plant Cell, 2012, 24, 4422-4436.	6.6	51
67	PGA: an R/Bioconductor package for identification of novel peptides using a customized database derived from RNA-Seq. BMC Bioinformatics, 2016, 17, 244.	2.6	48
68	Initial data release and announcement of the 10,000 Fish Genomes Project (Fish10K). GigaScience, 2020, 9, .	6.4	47
69	Genome Annotation of a Model Diatom Phaeodactylum tricornutum Using an Integrated Proteogenomic Pipeline. Molecular Plant, 2018, 11, 1292-1307.	8.3	44
70	A chromosomeâ€level genome of black rockfish, <i>Sebastes schlegelii</i> , provides insights into the evolution of live birth. Molecular Ecology Resources, 2019, 19, 1309-1321.	4.8	44
71	Chloranthus genome provides insights into the early diversification of angiosperms. Nature Communications, 2021, 12, 6930.	12.8	44
72	Analysis of elite variety tag SNPs reveals an important allele in upland rice. Nature Communications, 2013, 4, 2138.	12.8	43

#	Article	IF	CITATIONS
73	Announcing the Genome Atlas of Bamboo and Rattan (GABR) project: promoting research in evolution and in economically and ecologically beneficial plants. GigaScience, 2017, 6, 1-7.	6.4	42
74	Is there foul play in the leaf pocket? The metagenome of floating fern <i>Azolla</i> reveals endophytes that do not fix N ₂ but may denitrify. New Phytologist, 2018, 217, 453-466.	7.3	42
75	Chromosome-level genome assembly of the spotted sea bass, Lateolabrax maculatus. GigaScience, 2018, 7, .	6.4	39
76	CRISPR-C: circularization of genes and chromosome by CRISPR in human cells. Nucleic Acids Research, 2018, 46, e131.	14.5	39
77	Molecular digitization of a botanical garden: high-depth whole-genome sequencing of 689 vascular plant species from the Ruili Botanical Garden. GigaScience, 2019, 8, .	6.4	39
78	Whole-genome sequencing of 175 Mongolians uncovers population-specific genetic architecture and gene flow throughout North and East Asia. Nature Genetics, 2018, 50, 1696-1704.	21.4	38
79	Population genomic data reveal genes related to important traits of quail. GigaScience, 2018, 7, .	6.4	38
80	Draft genome sequence of Solanum aethiopicum provides insights into disease resistance, drought tolerance, and the evolution of the genome. GigaScience, 2019, 8, .	6.4	38
81	Genomeâ€wide analysis of epigenetic and transcriptional changes associated with heterosis in pigeonpea. Plant Biotechnology Journal, 2020, 18, 1697-1710.	8.3	38
82	Genetic variation among 481 diverse soybean accessions, inferred from genomic re-sequencing. Scientific Data, 2021, 8, 50.	5.3	38
83	Deep whole-genome sequencing of 90 Han Chinese genomes. GigaScience, 2017, 6, 1-7.	6.4	36
84	The White-Spotted Bamboo Shark Genome Reveals Chromosome Rearrangements and Fast-Evolving Immune Genes of Cartilaginous Fish. IScience, 2020, 23, 101754.	4.1	36
85	The Chromosome Level Genome and Genome-wide Association Study for the Agronomic Traits of Panax Notoginseng. IScience, 2020, 23, 101538.	4.1	34
86	Draft genome sequence of the Tibetan medicinal herb Rhodiola crenulata. GigaScience, 2017, 6, 1-5.	6.4	33
87	Comparative Plastome Analysis of Root- and Stem-Feeding Parasites of Santalales Untangle the Footprints of Feeding Mode and Lifestyle Transitions. Genome Biology and Evolution, 2020, 12, 3663-3676.	2.5	30
88	Draft Genomes of Two Artocarpus Plants, Jackfruit (A. heterophyllus) and Breadfruit (A. altilis). Genes, 2020, 11, 27.	2.4	30
89	RED-ML: a novel, effective RNA editing detection method based on machine learning. GigaScience, 2017, 6, 1-8.	6.4	29
90	New insights from Opisthorchis felineus genome: update on genomics of the epidemiologically important liver flukes. BMC Genomics, 2019, 20, 399.	2.8	29

#	Article	IF	CITATIONS
91	The chromosome-level genome assemblies of two rattans (Calamus simplicifolius and Daemonorops) Tj ETQq1	1 0.784314	rgBT /Overlo
92	Genomic variants identified from whole-genome resequencing of indicine cattle breeds from Pakistan. PLoS ONE, 2019, 14, e0215065.	2.5	28
93	Sequencing of the MHC region defines <i>HLA-DQA1</i> as the major genetic risk for seropositive rheumatoid arthritis in Han Chinese population. Annals of the Rheumatic Diseases, 2019, 78, 773-780.	0.9	27
94	The first chromosomeâ€evel genome for a marine mammal as a resource to study ecology and evolution. Molecular Ecology Resources, 2019, 19, 944-956.	4.8	27
95	Beaver and Naked Mole Rat Genomes Reveal Common Paths to Longevity. Cell Reports, 2020, 32, 107949.	6.4	26
96	Chromosome-level reference genome of the Siamese fighting fish Betta splendens, a model species for the study of aggression. GigaScience, 2018, 7, .	6.4	25
97	Chromosomal level reference genome of <i>Tachypleus tridentatus</i> provides insights into evolution and adaptation of horseshoe crabs. Molecular Ecology Resources, 2019, 19, 744-756.	4.8	25
98	Chromosomeâ€level genome assembly of <i>Lethenteron reissneri</i> provides insights into lamprey evolution. Molecular Ecology Resources, 2021, 21, 448-463.	4.8	25
99	Analysis of 427 genomes reveals moso bamboo population structure and genetic basis of property traits. Nature Communications, 2021, 12, 5466.	12.8	24
100	A genome draft of the legless anguid lizard, Ophisaurus gracilis. GigaScience, 2015, 4, 17.	6.4	23
101	Deciphering the Microbial Taxonomy and Functionality of Two Diverse Mangrove Ecosystems and Their Potential Abilities To Produce Bioactive Compounds. MSystems, 2020, 5, .	3.8	23
102	Fast-Suppressor Screening for New Components in Protein Trafficking, Organelle Biogenesis and Silencing Pathway in Arabidopsis thaliana Using DEX-Inducible FREE1-RNAi Plants. Journal of Genetics and Genomics, 2015, 42, 319-330.	3.9	18
103	Natural selection and repeated patterns of molecular evolution following allopatric divergence. ELife, 2019, 8, .	6.0	18
104	Whole-genome duplication and molecular evolution in Cornus L. (Cornaceae) – Insights from transcriptome sequences. PLoS ONE, 2017, 12, e0171361.	2.5	17
105	Dissecting the genome of star fruit (Averrhoa carambola L.). Horticulture Research, 2020, 7, 94.	6.3	16
106	First documented case of avian influenza (H5N1) virus infection in a lion. Emerging Microbes and Infections, 2016, 5, 1-3.	6.5	15
107	A survey of the sperm whale (<i>Physeter catodon</i>) commensal microbiome. PeerJ, 2019, 7, e7257.	2.0	15
108	Molecular evidence for origin, diversification and ancient gene duplication of plant subtilases (SBTs). Scientific Reports, 2019, 9, 12485.	3.3	14

#	Article	IF	CITATIONS
109	Chromosome level comparative analysis of Brassica genomes. Plant Molecular Biology, 2019, 99, 237-249.	3.9	14
110	An Indo-Pacific Humpback Dolphin Genome Reveals Insights into Chromosome Evolution and the Demography of a Vulnerable Species. IScience, 2020, 23, 101640.	4.1	14
111	Complete Chloroplast Genomes of 14 Mangroves: Phylogenetic and Comparative Genomic Analyses. BioMed Research International, 2020, 2020, 1-13.	1.9	14
112	Genome-wide Target Enrichment-aided Chip Design: a 66 K SNP Chip for Cashmere Goat. Scientific Reports, 2017, 7, 8621.	3.3	11
113	Phylogenomics Provides New Insights into Gains and Losses of Selenoproteins among Archaeplastida. International Journal of Molecular Sciences, 2019, 20, 3020.	4.1	10
114	Performance of copy number variants detection based on whole-genome sequencing by DNBSEQ platforms. BMC Bioinformatics, 2020, 21, 518.	2.6	10
115	The genome of the naturally evolved obesity-prone Ossabaw miniature pig. IScience, 2021, 24, 103081.	4.1	9
116	Retinoic acid combined with spermatogonial stem cell conditions facilitate the generation of mouse germ-like cells. Bioscience Reports, 2017, 37, .	2.4	8
117	Haplotyping by CRISPR-mediated DNA circularization (CRISPR-hapC) broadens allele-specific gene editing. Nucleic Acids Research, 2020, 48, e25-e25.	14.5	8
118	Improvement of peptide identification with considering the abundance of mRNA and peptide. BMC Bioinformatics, 2017, 18, 109.	2.6	7
119	Transcriptomic analyses reveal new genes and networks response to H5N1 influenza viruses in duck (Anas platyrhynchos). Journal of Integrative Agriculture, 2019, 18, 1460-1472.	3.5	7
120	Chromosome-Level Comprehensive Genome of Mangrove Sediment-Derived Fungus Penicillium variabile HXQ-H-1. Journal of Fungi (Basel, Switzerland), 2020, 6, 7.	3.5	6
121	Enhancement of de novo sequencing, assembly and annotation of the Mongolian gerbil genome with transcriptome sequencing and assembly from several different tissues. BMC Genomics, 2019, 20, 903.	2.8	5
122	Genome sequencing of deep-sea hydrothermal vent snails reveals adaptions to extreme environments. GigaScience, 2020, 9, .	6.4	5
123	The microbial diversity in industrial effluents makes high-throughput sequencing-based source tracking of the effluents possible. Environmental Research, 2022, 212, 113640.	7.5	5
124	Lineageâ€specific evolution of mangrove plastid genomes. Plant Genome, 2020, 13, e20019.	2.8	4
125	A novel Enterovirus 96 circulating in China causes hand, foot, and mouth disease. Virus Genes, 2017, 53, 352-356.	1.6	3
126	Central and Peripheral Nervous System Progenitors Derived from Human Pluripotent Stem Cells Reveal a Unique Temporal and Cell-Type Specific Expression of PMCAs. Frontiers in Cell and Developmental Biology, 2018, 6, 5.	3.7	3

#	Article	IF	CITATIONS
127	LION: a simple and rapid method to achieve CRISPR gene editing. Cellular and Molecular Life Sciences, 2019, 76, 2633-2645.	5.4	3
128	African Arowana Genome Provides Insights on Ancient Teleost Evolution. IScience, 2020, 23, 101662.	4.1	3
129	The genome of Mekong tiger perch (Datnioides undecimradiatus) provides insights into the phylogenetic position of Lobotiformes and biological conservation. Scientific Reports, 2020, 10, 8164.	3.3	3
130	Comparative population genomics reveals the domestication history of the peach,. Genome Biology, 2014, 15, 415.	9.6	3
131	The draft genome assembly of the critically endangered Nyssa yunnanensis, a plant species with extremely small populations endemic to Yunnan Province, China. GigaByte, 0, 2020, 1-12.	0.0	3
132	Complete Genome Sequence of a $\langle i \rangle$ Salivirus $\langle i \rangle$ in Respiratory Specimens from a Child with Adenovirus Infection. Genome Announcements, 2016, 4, .	0.8	2
133	Appraisal of the Missing Proteins Based on the mRNAs Bound to Ribosomes. Journal of Proteome Research, 2015, 14, 4976-4984.	3.7	1
134	The complete plastid genomes of four species from Brassicales. Mitochondrial DNA Part B: Resources, 2019, 4, 124-125.	0.4	1
135	Family-Based Whole Genome Sequencing Identified Novel Variants in ABCA5 Gene in a Patient with Idiopathic Ventricular Tachycardia. Pediatric Cardiology, 2020, 41, 1783-1794.	1.3	1
136	The complete chloroplast genome of a shrub species, <i>Smilax glabra</i> (Smilacaceae) from Guangdong, China. Mitochondrial DNA Part B: Resources, 2021, 6, 3064-3066.	0.4	1
137	Long- read sequencing and de novo assembly of the cynomolgus macaque genome. Journal of Genetics and Genomics, 2022, , .	3.9	1