
Makiko Yasuda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8739253/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ZFN-mediated inÂvivo gene editing in hepatocytes leads to supraphysiologic α-Gal A activity and effective substrate reduction in Fabry mice. Molecular Therapy, 2021, 29, 3230-3242.	8.2	9
2	AAV2/6 Gene Therapy in a Murine Model of Fabry Disease Results in Supraphysiological Enzyme Activity and Effective Substrate Reduction. Molecular Therapy - Methods and Clinical Development, 2020, 18, 607-619.	4.1	29
3	Severe hydroxymethylbilane synthase deficiency causes depression-like behavior and mitochondrial dysfunction in a mouse model of homozygous dominant acute intermittent porphyria. Acta Neuropathologica Communications, 2020, 8, 38.	5.2	5
4	Murine models of the human porphyrias: Contributions toward understanding disease pathogenesis and the development of new therapies. Molecular Genetics and Metabolism, 2019, 128, 332-341.	1.1	12
5	International Porphyria Molecular Diagnostic Collaborative: an evidence-based database of verified pathogenic and benign variants for the porphyrias. Genetics in Medicine, 2019, 21, 2605-2613.	2.4	16
6	Identification and characterization of 40 novel hydroxymethylbilane synthase mutations that cause acute intermittent porphyria. Journal of Inherited Metabolic Disease, 2019, 42, 186-194.	3.6	17
7	Congenital erythropoietic porphyria and erythropoietic protoporphyria: Identification of 7 uroporphyrinogen III synthase and 20 ferrochelatase novel mutations. Molecular Genetics and Metabolism, 2019, 128, 358-362.	1.1	9
8	Sex differences in vascular reactivity in mesenteric arteries from a mouse model of acute intermittent porphyria. Molecular Genetics and Metabolism, 2019, 128, 376-381.	1.1	16
9	Characterization of the hepatic transcriptome following phenobarbital induction in mice with AIP. Molecular Genetics and Metabolism, 2019, 128, 382-390.	1.1	7
10	Homozygous hydroxymethylbilane synthase knock-in mice provide pathogenic insights into the severe neurological impairments present in human homozygous dominant acute intermittent porphyria. Human Molecular Genetics, 2019, 28, 1755-1767.	2.9	17
11	Acute hepatic porphyrias: Identification of 46 hydroxymethylbilane synthase, 11 coproporphyrinogen oxidase, and 20 protoporphyrinogen oxidase novel mutations. Molecular Genetics and Metabolism, 2019, 128, 352-357.	1.1	2
12	Porphyria cutanea tarda and hepatoerythropoietic porphyria: Identification of 19 novel uroporphyrinogen III decarboxylase mutations. Molecular Genetics and Metabolism, 2019, 128, 363-366.	1.1	9
13	Recent advances on porphyria genetics: Inheritance, penetrance & molecular heterogeneity, including new modifying/causative genes. Molecular Genetics and Metabolism, 2019, 128, 320-331.	1.1	59
14	Human hydroxymethylbilane synthase: Molecular dynamics of the pyrrole chain elongation identifies step-specific residues that cause AIP. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4071-E4080.	7.1	32
15	Fabry Disease: prevalence of affected males and heterozygotes with pathogenic <i>GLA</i> mutations identified by screening renal, cardiac and stroke clinics, 1995–2017. Journal of Medical Genetics, 2018, 55, 261-268.	3.2	91
16	Identification and characterization of 40 novel hydroxymethylbilane synthase mutations that cause acute intermittent porphyria. Journal of Inherited Metabolic Disease, 2018, 42, 186.	3.6	9
17	Insight into GATA1 transcriptional activity through interrogation of <i>cis</i> elements disrupted in human erythroid disorders. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4434-4439.	7.1	56
18	Acute Intermittent Porphyria: Predicted Pathogenicity of <i>HMBS</i> Variants Indicates Extremely Low Penetrance of the Autosomal Dominant Disease. Human Mutation, 2016, 37, 1215-1222.	2.5	129

Μακικό Yasuda

#	Article	IF	CITATIONS
19	Acute Intermittent Porphyria in children: A case report and review of the literature. Molecular Genetics and Metabolism, 2016, 119, 295-299.	1.1	31
20	Liver Transplantation for Acute Intermittent Porphyria: Biochemical and Pathologic Studies of the Explanted Liver. Molecular Medicine, 2015, 21, 487-495.	4.4	51
21	Preclinical Development of a Subcutaneous ALAS1 RNAi Therapeutic for Treatment of Hepatic Porphyrias Using Circulating RNA Quantification. Molecular Therapy - Nucleic Acids, 2015, 4, e263.	5.1	107
22	RNAi-mediated silencing of hepatic <i>Alas1</i> effectively prevents and treats the induced acute attacks in acute intermittent porphyria mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7777-7782.	7.1	99
23	A LC–MS/MS method for the specific, sensitive, and simultaneous quantification of 5-aminolevulinic acid and porphobilinogen. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 2389-2396.	2.3	37
24	AAV8-mediated Gene Therapy Prevents Induced Biochemical Attacks of Acute Intermittent Porphyria and Improves Neuromotor Function. Molecular Therapy, 2010, 18, 17-22.	8.2	52
25	Acute intermittent porphyria: vector optimization for gene therapy. Journal of Gene Medicine, 2007, 9, 806-811.	2.8	6
26	Fabry disease: Characterization of ?-galactosidase A double mutations and the D313Y plasma enzyme pseudodeficiency allele. Human Mutation, 2003, 22, 486-492.	2.5	133
27	Fabry Disease: Novel α-Galactosidase A 3′-Terminal Mutations Result in Multiple Transcripts Due to Aberrant 3′-End Formation. American Journal of Human Genetics, 2003, 73, 162-173.	6.2	39