Gözde İnce

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8739133/publications.pdf

Version: 2024-02-01

257450 233421 2,037 52 24 45 h-index citations g-index papers 53 53 53 2328 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Encapsulation of interdigitated electrodes by PTFE coatings via closed batch initiated chemical vapor deposition. Vacuum, 2022, 195, 110691.	3.5	5
2	Dual stimuli-responsive nanocarriers via a facile batch emulsion method for controlled release of Rose Bengal. Journal of Drug Delivery Science and Technology, 2022, 74, 103547.	3.0	2
3	Vapor phase synthesis of ferroelectric microislands on PVDF thin films. Nanotechnology, 2021, 32, 435601.	2.6	1
4	Editorial: One- and Two-Dimensional Nanostructures for Drug Delivery Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 782615.	4.1	0
5	Fabrication of 3D Bone Scaffolds Functionalized With Spatiotemporal Release of BMP-2 Growth Factor via iCVD to Enhance Osteoregeneration. , 2020, , .		0
6	Fabrication and Analysis of Surface Functionalized Porous PCL-nHA Scaffolds With P(HEMA-co-EGDMA) Hydrogel via iCVD and BMP-2 Release Simulation. , 2020, , .		0
7	Multifunctional one-dimensional polymeric nanostructures for drug delivery and biosensor applications. Nanotechnology, 2019, 30, 412001.	2.6	19
8	Electrospun Nanofibers With pH-Responsive Coatings for Control of Release Kinetics. Frontiers in Bioengineering and Biotechnology, 2019, 7, 309.	4.1	30
9	Protein gating by vapor deposited Janus membranes. Journal of Membrane Science, 2019, 575, 126-134.	8.2	21
10	Fabrication and characterization of temperature and pH resistant thin film nanocomposite membranes embedded with halloysite nanotubes for dye rejection. Desalination, 2018, 429, 20-32.	8.2	57
11	Transfer printing gold nanoparticle arrays by tuning the surface hydrophilicity of thermo-responsive poly N-isopropylacrylamide (pNIPAAm). Nanoscale, 2017, 9, 2969-2973.	5. 6	22
12	Subcooled flow boiling heat transfer enhancement using polyperfluorodecylacrylate (pPFDA) coated microtubes with different coating thicknesses. Experimental Thermal and Fluid Science, 2017, 86, 130-140.	2.7	10
13	Smart membranes with pH-responsive control of macromolecule permeability. Journal of Membrane Science, 2017, 537, 255-262.	8.2	33
14	Pool Boiling Heat Transfer Characteristics of Inclined pHEMA-Coated Surfaces. Journal of Heat Transfer, 2017, 139, .	2.1	14
15	Cell sheet based bioink for 3D bioprinting applications. Biofabrication, 2017, 9, 024105.	7.1	47
16	Synthesis of coaxial nanotubes of polyaniline and poly(hydroxyethyl methacrylate) by oxidative/initiated chemical vapor deposition. Beilstein Journal of Nanotechnology, 2017, 8, 872-882.	2.8	6
17	Enhancemet of flow boiling heat transfer in pHEMA/pPFDA coated microtubes with longitudinal variations in wettability. AIP Advances, 2016, 6, 035212.	1.3	10
18	An Experimental Study on Flow Boiling Characteristics of pHEMA Nano-Coated Surfaces in a Microchannel. , 2016 , , .		1

#	Article	IF	Citations
19	Lightâ€Driven Unidirectional Liquid Motion on Anisotropic Gold Nanorod Arrays. Advanced Materials Interfaces, 2015, 2, 1500226.	3.7	26
20	Permeability of small molecules through vapor deposited polymer membranes. Journal of Applied Polymer Science, $2015,132,$	2.6	15
21	Coaxial nanotubes of stimuli responsive polymers with tunable release kinetics. Soft Matter, 2015, 11, 8069-8075.	2.7	14
22	Functional Nanotubes for Triggered Release of Molecules. Nanoscience and Nanotechnology Letters, 2015, 7, 79-83.	0.4	4
23	Flow Boiling Enhancement in Microtubes With Crosslinked pHEMA Coatings and the Effect of Coating Thickness. Journal of Heat Transfer, 2014, 136, .	2.1	25
24	Initiated Chemical Vapor Deposition and Lightâ€Responsive Crossâ€Linking of Poly(vinyl cinnamate) Thin Films. Macromolecular Rapid Communications, 2014, 35, 1345-1350.	3.9	20
25	A facile method for fabrication of responsive micropatterned surfaces. Smart Materials and Structures, 2014, 23, 095020.	3.5	5
26	Surface modification of reverse osmosis desalination membranes by thin-film coatings deposited by initiated chemical vapor deposition. Thin Solid Films, 2013, 539, 181-187.	1.8	59
27	One-Dimensional Surface-Imprinted Polymeric Nanotubes for Specific Biorecognition by Initiated Chemical Vapor Deposition (iCVD). ACS Applied Materials & Samp; Interfaces, 2013, 5, 6447-6452.	8.0	37
28	Boiling heat transfer enhancement in mini/microtubes via polyhydroxyethylmethacrylate (pHEMA) coatings on inner microtube walls at high mass fluxes. Journal of Micromechanics and Microengineering, 2013, 23, 115017.	2.6	23
29	Flow Boiling Enhancement in Microtubes With Crosslinked pHEMA Coatings. , 2013, , .		O
30	CVD of polymeric thin films: applications in sensors, biotechnology, microelectronics/organic electronics, microfluidics, MEMS, composites and membranes. Reports on Progress in Physics, 2012, 75, 016501.	20.1	152
31	A stimuli-responsive coaxial nanofilm for burst release. Soft Matter, 2011, 7, 638-643.	2.7	39
32	Responsive Microgrooves for the Formation of Harvestable Tissue Constructs. Langmuir, 2011, 27, 5671-5679.	3.5	57
33	Surface-Tethered Zwitterionic Ultrathin Antifouling Coatings on Reverse Osmosis Membranes by Initiated Chemical Vapor Deposition. Chemistry of Materials, 2011, 23, 1263-1272.	6.7	244
34	Random copolymer films as potential antifouling coatings for reverse osmosis membranes. Desalination and Water Treatment, 2011, 34, 100-105.	1.0	17
35	Microworm optode sensors limit particle diffusion to enable in vivo measurements. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2656-2661.	7.1	50
36	Chemical Vapor Deposition of Conformal, Functional, and Responsive Polymer Films. Advanced Materials, 2010, 22, 1993-2027.	21.0	329

#	Article	IF	CITATIONS
37	Tunable Conformality of Polymer Coatings on High Aspect Ratio Features. Chemical Vapor Deposition, 2010, 16, 100-105.	1.3	50
38	Singleâ€Chamber Deposition of Multilayer Barriers by Plasma Enhanced and Initiated Chemical Vapor Deposition of Organosilicones. Plasma Processes and Polymers, 2010, 7, 561-570.	3.0	50
39	Thermal Stability of Acrylic/Methacrylic Sacrificial Copolymers Fabricated by Initiated Chemical Vapor Deposition. Journal of the Electrochemical Society, 2010, 157, D41.	2.9	15
40	Shape Memory Polymer Thin Films Deposited by Initiated Chemical Vapor Deposition. Macromolecules, 2010, 43, 8344-8347.	4.8	11
41	Highly swellable free-standing hydrogel nanotube forests. Soft Matter, 2010, 6, 1635.	2.7	55
42	Transition between kinetic and mass transfer regimes in the initiated chemical vapor deposition from ethylene glycol diacrylate. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 1135-1143.	2.1	81
43	<i>In situ</i> x-ray studies of native and Mo-seeded surface nanostructuring during ion bombardment of Si(100). Journal of Physics Condensed Matter, 2009, 21, 224008.	1.8	41
44	Flexible Cross-Linked Organosilicon Thin Films by Initiated Chemical Vapor Deposition. Macromolecules, 2009, 42, 8138-8145.	4.8	30
45	Effects of Mo seeding on the formation of Si nanodots during low-energy ion bombardment. Journal of Vacuum Science & Technology B, 2008, 26, 551-558.	1.3	64
46	Mechanisms of pattern formation and smoothing induced by ion-beam erosion. Physical Review B, 2008, 78, .	3.2	30
47	Transition behavior of surface morphology evolution of Si(100) during low-energy normal-incidence Ar+ ion bombardment. Journal of Applied Physics, 2008, 103, .	2.5	17
48	Wavelength tunability of ion-bombardment-induced ripples on sapphire. Physical Review B, 2007, 75, .	3.2	42
49	Real-time X-ray studies of the growth of Mo-seeded Si nanodots by low-energy ion bombardment. Nuclear Instruments & Methods in Physics Research B, 2007, 264, 47-54.	1.4	12
50	Real-time synchrotron x-ray studies of low- and high-temperature nitridation ofc-plane sapphire. Physical Review B, 2006, 74, .	3.2	13
51	Real-time x-ray studies of gallium adsorption and desorption. Journal of Applied Physics, 2006, 100, 084307.	2.5	6
52	Real-time x-ray studies of Mo-seeded Si nanodot formation during ion bombardment. Applied Physics Letters, 2005, 87, 163104.	3.3	126