Thomas Langmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/873909/publications.pdf

Version: 2024-02-01

82 papers 5,826 citations

36 h-index 72 g-index

87 all docs

87 does citations

87 times ranked

8739 citing authors

#	Article	IF	CITATIONS
1	Inflammation in Viral Vector-Mediated Ocular Gene Therapy: A Review and Report From a Workshop Hosted by the Foundation Fighting Blindness, 9/2020. Translational Vision Science and Technology, 2021, 10, 3.	2.2	18
2	VEGFR1 signaling in retinal angiogenesis and microinflammation. Progress in Retinal and Eye Research, 2021, 84, 100954.	15.5	123
3	The AhR ligand 2, $2\hat{a}\in^2$ -aminophenyl indole (2AI) regulates microglia homeostasis and reduces pro-inflammatory signaling. Biochemical and Biophysical Research Communications, 2021, 579, 15-21.	2.1	4
4	PDGF Receptor Alpha Signaling Is Key for MÃ $\frac{1}{4}$ ller Cell Homeostasis Functions. International Journal of Molecular Sciences, 2021, 22, 1174.	4.1	4
5	Cytokine signaling as key regulator of pathological angiogenesis in the eye. EBioMedicine, 2021, 73, 103662.	6.1	O
6	The role of lymphocytes and phagocytes in age-related macular degeneration (AMD). Cellular and Molecular Life Sciences, 2020, 77, 781-788.	5.4	34
7	Microglia and Inflammatory Responses in Diabetic Retinopathy. Frontiers in Immunology, 2020, 11, 564077.	4.8	129
8	A mega-analysis of expression quantitative trait loci in retinal tissue. PLoS Genetics, 2020, 16, e1008934.	3.5	22
9	IFN- \hat{l}^2 signaling dampens microglia reactivity but does not prevent from light-induced retinal degeneration. Biochemistry and Biophysics Reports, 2020, 24, 100866.	1.3	1
10	Indole-3-carbinol regulates microglia homeostasis and protects the retina from degeneration. Journal of Neuroinflammation, 2020, 17, 327.	7.2	21
11	Translocator protein (18ÂkDa) (TSPO) ligands activate Nrf2 signaling and attenuate inflammatory responses and oxidative stress in human retinal pigment epithelial cells. Biochemical and Biophysical Research Communications, 2020, 528, 261-268.	2.1	8
12	The TSPO-NOX1 axis controls phagocyte-triggered pathological angiogenesis in the eye. Nature Communications, 2020, 11, 2709.	12.8	51
13	Major Predictive Factors for Progression of Early to Late Age-Related Macular Degeneration. Ophthalmologica, 2020, 243, 444-452.	1.9	10
14	Phenotype of Innate Immune Cells in Uveitis Associated with Axial Spondyloarthritis- and Juvenile Idiopathic Arthritis-associated Uveitis. Ocular Immunology and Inflammation, 2020, , 1-10.	1.8	10
15	Phenotypic Differences in Primary Murine Microglia Treated with NOD1, NOD2, and NOD1/2 Agonists. Journal of Molecular Neuroscience, 2020, 70, 600-609.	2.3	3
16	A Circulating MicroRNA Profile in a Laser-Induced Mouse Model of Choroidal Neovascularization. International Journal of Molecular Sciences, 2020, 21, 2689.	4.1	8
17	Loss of IL-10 Promotes Differentiation of Microglia to a M1 Phenotype. Frontiers in Cellular Neuroscience, 2019, 13, 430.	3.7	67
18	Microglia in Retinal Degeneration. Frontiers in Immunology, 2019, 10, 1975.	4.8	224

#	Article	IF	Citations
19	Systemic knockout of Tspo in mice does not affect retinal morphology, function and susceptibility to degeneration. Experimental Eye Research, 2019, 188, 107816.	2.6	12
20	Anti―VEGF â€A/ ANG 2 combotherapy limits pathological angiogenesis in the eye: a replication study. EMBO Molecular Medicine, 2019, 11, .	6.9	12
21	Co-inhibition of PGF and VEGF blocks their expression in mononuclear phagocytes and limits neovascularization and leakage in the murine retina. Journal of Neuroinflammation, 2019, 16, 26.	7.2	36
22	Testing for Known Retinal Degeneration Mutants in Mouse Strains. Methods in Molecular Biology, 2019, 1834, 45-58.	0.9	4
23	AMD-Associated HTRA1 Variants Do Not Influence TGF- \hat{I}^2 Signaling in Microglia. Advances in Experimental Medicine and Biology, 2019, 1185, 3-7.	1.6	3
24	ERG Alteration Due toÂthe rd8 Mutation of theÂCrb1 Gene in Cln3 +/+ rd8â^'/rd8- Mice. Advances in Experimental Medicine and Biology, 2019, 1185, 395-400.	1.6	0
25	Cystoid edema, neovascularization and inflammatory processes in the murine Norrin-deficient retina. Scientific Reports, 2018, 8, 5970.	3.3	4
26	Blockade of microglial adenosine A2A receptor impacts inflammatory mechanisms, reduces ARPE-19 cell dysfunction and prevents photoreceptor loss in vitro. Scientific Reports, 2018, 8, 2272.	3.3	44
27	Resveratrol induces dynamic changes to the microglia transcriptome, inhibiting inflammatory pathways and protecting against microglia-mediated photoreceptor apoptosis. Biochemical and Biophysical Research Communications, 2018, 501, 239-245.	2.1	18
28	Microglia Analysis in Retinal Degeneration Mouse Models. Methods in Molecular Biology, 2018, 1753, 159-166.	0.9	3
29	Mapping the genomic landscape of inherited retinal disease genes prioritizes genes prone to coding and noncoding copy-number variations. Genetics in Medicine, 2018, 20, 202-213.	2.4	47
30	Transcriptional regulation of Translocator protein (18†kDa) (TSPO) in microglia requires Pu.1, Ap1 and Sp factors. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 1119-1133.	1.9	13
31	Immunomodulation with minocycline rescues retinal degeneration in juvenile Neuronal Ceroid Lipofuscinosis (jNCL) mice highly susceptible to light damage. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	18
32	Modulation of three key innate immune pathways for the most common retinal degenerative diseases. EMBO Molecular Medicine, 2018, 10 , .	6.9	102
33	Neuroprotective Effects of FGF2 and Minocycline in Two Animal Models of Inherited Retinal Degeneration., 2018, 59, 4392.		58
34	Microglia Activation and Immunomodulatory Therapies for Retinal Degenerations. Frontiers in Cellular Neuroscience, 2018, 12, 176.	3.7	35
35	Further Characterization of the Predominant Inner Retinal Degeneration of Aging Cln3 Δex7/8 Knock-In Mice. Advances in Experimental Medicine and Biology, 2018, 1074, 403-411.	1.6	3
36	The Phenotype of Monocytes in Anterior Uveitis Depends on the HLA-B27 Status. Frontiers in Immunology, 2018, 9, 1773.	4.8	10

#	Article	IF	Citations
37	Local complement activation in aqueous humor in patients with age-related macular degeneration. Eye, 2017, 31, 810-813.	2.1	68
38	Effect of hyaluronic acid-binding to lipoplexes on intravitreal drug delivery for retinal gene therapy. European Journal of Pharmaceutical Sciences, 2017, 103, 27-35.	4.0	31
39	Activated microglia trigger inflammasome activation and lysosomal destabilization in human RPE cells. Biochemical and Biophysical Research Communications, 2017, 484, 681-686.	2.1	40
40	Comprehensive analysis of mouse retinal mononuclear phagocytes. Nature Protocols, 2017, 12, 1136-1150.	12.0	53
41	Retinal expression and localization of Mef2c support its important role in photoreceptor gene expression. Biochemical and Biophysical Research Communications, 2017, 483, 346-351.	2.1	4
42	Polysialic acid blocks mononuclear phagocyte reactivity, inhibits complement activation, and protects from vascular damage in the retina. EMBO Molecular Medicine, 2017, 9, 154-166.	6.9	63
43	Regulated efflux of photoreceptor outer segment-derived cholesterol by human RPE cells. Experimental Eye Research, 2017, 165, 65-77.	2.6	57
44	Crocin, a plant-derived carotenoid, modulates microglial reactivity. Biochemistry and Biophysics Reports, 2017, 12, 245-250.	1.3	11
45	Age-related macular degeneration associated polymorphism rs10490924 in ARMS2 results in deficiency of a complement activator. Journal of Neuroinflammation, 2017, 14, 4.	7.2	80
46	Modulation of microglia scanning functions by Aflibercept. Klinische Monatsblatter Fur Augenheilkunde, 2017, 234, .	0.5	0
47	Association of Hyperreflective Foci Present in Early Forms of Age-Related Macular Degeneration With Known Age-Related Macular Degeneration Risk Polymorphisms., 2016, 57, 4315.		23
48	Autosomal recessive retinitis pigmentosa with homozygous rhodopsin mutation E150K and non-coding cis-regulatory variants in CRX-binding regions of SAMD7. Scientific Reports, 2016, 6, 21307.	3.3	16
49	Gut flora connects obesity with pathological angiogenesis in the eye. EMBO Molecular Medicine, 2016, 8, 1361-1363.	6.9	6
50	Interferonâ€beta signaling in retinal mononuclear phagocytes attenuates pathological neovascularization. EMBO Molecular Medicine, 2016, 8, 670-678.	6.9	68
51	Isolated and Syndromic Retinal Dystrophy Caused by Biallelic Mutations in RCBTB1, a Gene Implicated in Ubiquitination. American Journal of Human Genetics, 2016, 99, 470-480.	6.2	39
52	Norrin mediates angiogenic properties via the induction of insulin-like growth factor-1. Experimental Eye Research, 2016, 145, 317-326.	2.6	18
53	A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nature Genetics, 2016, 48, 134-143.	21.4	1,167
54	Targeting translocator protein (18ÂkDa) (TSPO) dampens pro-inflammatory microglia reactivity in the retina and protects from degeneration. Journal of Neuroinflammation, 2015, 12, 201.	7.2	93

#	Article	IF	CITATIONS
55	Minocycline counter-regulates pro-inflammatory microglia responses in the retina and protects from degeneration. Journal of Neuroinflammation, 2015, 12, 209.	7.2	120
56	Glioma-Associated Microglia/Macrophages Display an Expression Profile Different from M1 and M2 Polarization and Highly Express Gpnmb and Spp1. PLoS ONE, 2015, 10, e0116644.	2.5	317
57	Activated microglia/macrophage whey acidic protein (AMWAP) inhibits NFκB signaling and induces a neuroprotective phenotype in microglia. Journal of Neuroinflammation, 2015, 12, 77.	7.2	47
58	Acid sphingomyelinase (aSMase) deficiency leads to abnormal microglia behavior and disturbed retinal function. Biochemical and Biophysical Research Communications, 2015, 464, 434-440.	2.1	13
59	Retinal microglia: Just bystander or target for therapy?. Progress in Retinal and Eye Research, 2015, 45, 30-57.	15.5	433
60	Early-onset autosomal recessive cerebellar ataxia associated with retinal dystrophy: new human hotfoot phenotype caused by homozygous GRID2 deletion. Genetics in Medicine, 2015, 17, 291-299.	2.4	37
61	Microglia in the Aging Retina. Advances in Experimental Medicine and Biology, 2014, 801, 207-212.	1.6	27
62	Translocator protein ($18 {\rm \^AkDa}$) (TSPO) is expressed in reactive retinal microglia and modulates microglial inflammation and phagocytosis. Journal of Neuroinflammation, 2014, 11, 3.	7.2	177
63	Disruption of the retinitis pigmentosa 28 gene Fam161a in mice affects photoreceptor ciliary structure and leads to progressive retinal degeneration. Human Molecular Genetics, 2014, 23, 5197-5210.	2.9	59
64	Sterile Alpha Motif Containing 7 (Samd7) Is a Novel Crx-Regulated Transcriptional Repressor in the Retina. PLoS ONE, 2013, 8, e60633.	2.5	21
65	Immune cells perturb axons and impair neuronal survival in a mouse model of infantile neuronal ceroid lipofuscinosis. Brain, 2013, 136, 1083-1101.	7.6	51
66	Class A Scavenger Receptors Shed Light on Immune Cell Recruitment and CNV., 2013, 54, 5971.		1
67	Progressive Retinal Degeneration and Glial Activation in the CLN6nclf Mouse Model of Neuronal Ceroid Lipofuscinosis: A Beneficial Effect of DHA and Curcumin Supplementation. PLoS ONE, 2013, 8, e75963.	2.5	60
68	Microglial Activation and Transcriptomic Changes in the Blue Light-Exposed Mouse Retina. Advances in Experimental Medicine and Biology, 2012, 723, 619-632.	1.6	11
69	The retinitis pigmentosa 28 protein FAM161A is a novel ciliary protein involved in intermolecular protein interaction and microtubule association. Human Molecular Genetics, 2012, 21, 4573-4586.	2.9	50
70	Retinal expression of the X-linked juvenile retinoschisis (RS1) gene is controlled by an upstream CpG island and two opposing CRX-bound regions. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2011, 1809, 245-254.	1.9	3
71	Curcumin is a potent modulator of microglial gene expression and migration. Journal of Neuroinflammation, 2011, 8, 125.	7.2	107
72	Nonsense Mutations in FAM161A Cause RP28-Associated Recessive Retinitis Pigmentosa. American Journal of Human Genetics, 2010, 87, 376-381.	6.2	76

#	Article	IF	CITATION
73	CRX ChIP-seq reveals the <i>cis</i> -regulatory architecture of mouse photoreceptors. Genome Research, 2010, 20, 1512-1525.	5.5	183
74	The Novel Activated Microglia/Macrophage WAP Domain Protein, AMWAP, Acts as a Counter-Regulator of Proinflammatory Response. Journal of Immunology, 2010, 185, 3379-3390.	0.8	64
75	Luteolin triggers global changes in the microglial transcriptome leading to a unique anti-inflammatory and neuroprotective phenotype. Journal of Neuroinflammation, 2010, 7, 3.	7.2	139
76	Microglia in the healthy and degenerating retina: Insights from novel mouse models. Immunobiology, 2010, 215, 685-691.	1.9	179
77	Induction of Early Growth Response-1 Mediates Microglia Activation In Vitro But is Dispensable In Vivo. NeuroMolecular Medicine, 2009, $11,87-96$.	3.4	13
78	Docosahexaenoic acid attenuates microglial activation and delays early retinal degeneration. Journal of Neurochemistry, 2009, 110, 1863-1875.	3.9	75
79	CRX controls retinal expression of the X-linked juvenile retinoschisis (RS1) gene. Nucleic Acids Research, 2008, 36, 6523-6534.	14.5	13
80	Chondroitin sulfate disaccharide stimulates microglia to adopt a novel regulatory phenotype. Journal of Leukocyte Biology, 2008, 84, 736-740.	3.3	38
81	Genome-Wide Expression Profiling of the Retinoschisin-Deficient Retina in Early Postnatal Mouse Development. , 2007, 48, 891.		53
82	Microglia activation in retinal degeneration. Journal of Leukocyte Biology, 2007, 81, 1345-1351.	3.3	436