
## Mizue Mizoshiri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8738712/publications.pdf Version: 2024-02-01



MIZHE MIZOSHIDI

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Direct writing of Cu-based micro-temperature detectors using femtosecond laser reduction of CuO nanoparticles. Applied Physics Express, 2016, 9, 036701.                                                                         | 2.4 | 52        |
| 2  | Thermal–Photovoltaic Hybrid Solar Generator Using Thin-Film Thermoelectric Modules. Japanese<br>Journal of Applied Physics, 2012, 51, 06FL07.                                                                                    | 1.5 | 33        |
| 3  | Microlens arrays of high-refractive-index glass fabricated by femtosecond laser lithography. Applied<br>Surface Science, 2009, 255, 9750-9753.                                                                                   | 6.1 | 32        |
| 4  | Thin-Film Thermoelectric Modules for Power Generation Using Focused Solar Light. Journal of Electronic Materials, 2012, 41, 1713-1719.                                                                                           | 2.2 | 31        |
| 5  | Direct fabrication of Cu/Cu2O composite micro-temperature sensor using femtosecond laser reduction patterning. Japanese Journal of Applied Physics, 2016, 55, 06GP05.                                                            | 1.5 | 31        |
| 6  | Field emission current and vacuum breakdown by a pointed cathode. Thin Solid Films, 2007, 515, 4247-4250.                                                                                                                        | 1.8 | 28        |
| 7  | Thermal–Photovoltaic Hybrid Solar Generator Using Thin-Film Thermoelectric Modules. Japanese<br>Journal of Applied Physics, 2012, 51, 06FL07.                                                                                    | 1.5 | 24        |
| 8  | SiO_2-based nonplanar structures fabricated using femtosecond laser lithography. Optics Express, 2008, 16, 17288.                                                                                                                | 3.4 | 23        |
| 9  | p-Type Sb2Te3and n-Type Bi2Te3Films for Thermoelectric Modules Deposited by Thermally Assisted Sputtering Method. Japanese Journal of Applied Physics, 2013, 52, 06GL07.                                                         | 1.5 | 22        |
| 10 | Selective fabrication of p-type and n-type thermoelectric micropatterns by the reduction of CuO/NiO<br>mixed nanoparticles using femtosecond laser pulses. Applied Physics A: Materials Science and<br>Processing, 2018, 124, 1. | 2.3 | 22        |
| 11 | Effect of Heat Accumulation on Femtosecond Laser Reductive Sintering of Mixed CuO/NiO<br>Nanoparticles. Micromachines, 2018, 9, 264.                                                                                             | 2.9 | 22        |
| 12 | Fabrication of thin-film thermoelectric generators with ball lenses for conversion of near-infrared solar light. Japanese Journal of Applied Physics, 2017, 56, 06GN06.                                                          | 1.5 | 20        |
| 13 | Evaluation of the Thermoelectric Module Consisting of W-Doped Heusler Fe2VAl Alloy. Journal of Electronic Materials, 2014, 43, 1922-1926.                                                                                        | 2.2 | 19        |
| 14 | Cu Patterning Using Femtosecond Laser Reductive Sintering of CuO Nanoparticles under Inert Gas<br>Injection. Materials, 2021, 14, 3285.                                                                                          | 2.9 | 18        |
| 15 | SiO <sub>2</sub> -Based Hybrid Diffractive–Refractive Lenses Fabricated by Femtosecond Laser-Assisted<br>Micromachining. Applied Physics Express, 0, 1, 127001.                                                                  | 2.4 | 17        |
| 16 | Direct patterning of Cu microstructures using femtosecond laser-induced CuO nanoparticle reduction. Japanese Journal of Applied Physics, 2015, 54, 06FP07.                                                                       | 1.5 | 16        |
| 17 | Direct Writing of Copper Micropatterns Using Near-Infrared Femtosecond Laser-Pulse-Induced Reduction of Glyoxylic Acid Copper Complex. Micromachines, 2019, 10, 401.                                                             | 2.9 | 14        |
| 18 | Copper and Nickel Microsensors Produced by Selective Laser Reductive Sintering for Non-Enzymatic<br>Glucose Detection. Materials, 2021, 14, 2493.                                                                                | 2.9 | 14        |

MIZUE MIZOSHIRI

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Ni-based composite microstructures fabricated by femtosecond laser reductive sintering of NiO/Cr<br>mixed nanoparticles. Japanese Journal of Applied Physics, 2017, 56, 06GN08.                                                               | 1.5 | 13        |
| 20 | Direct writing of two- and three-dimensional Cu-based microstructures by femtosecond laser reductive sintering of the Cu <sub>2</sub> O nanospheres. Optical Materials Express, 2019, 9, 2828.                                                | 3.0 | 13        |
| 21 | Three-dimensional SiO2 surface structures fabricated usingÂfemtosecond laser lithography. Applied<br>Physics A: Materials Science and Processing, 2010, 98, 171-177.                                                                          | 2.3 | 12        |
| 22 | The effect of Cr buffer layer thickness on voltage generation of thin-film thermoelectric modules.<br>Journal of Micromechanics and Microengineering, 2013, 23, 115016.                                                                       | 2.6 | 11        |
| 23 | Direct writing of Cu-based fine micropatterns using femtosecond laser pulse-induced sintering of Cu2O nanospheres. Japanese Journal of Applied Physics, 2019, 58, SDDF05.                                                                     | 1.5 | 10        |
| 24 | Three-dimensional Cu microfabrication using femtosecond laser-induced reduction of CuO nanoparticles. Applied Physics Express, 2017, 10, 017201.                                                                                              | 2.4 | 9         |
| 25 | Effect of Substrates on Femtosecond Laser Pulse-Induced Reductive Sintering of Cobalt Oxide Nanoparticles. Nanomaterials, 2021, 11, 3356.                                                                                                     | 4.1 | 9         |
| 26 | Lift-off patterning of thermoelectric thick films deposited by a thermally assisted sputtering method.<br>Applied Physics Express, 2014, 7, 057101.                                                                                           | 2.4 | 8         |
| 27 | Direct Writing of Cu Patterns on Polydimethylsiloxane Substrates Using Femtosecond Laser<br>Pulse-Induced Reduction of Glyoxylic Acid Copper Complex. Micromachines, 2021, 12, 493.                                                           | 2.9 | 7         |
| 28 | Femtosecond laser direct writing of Cu–Ni alloy patterns in ambient atmosphere using glyoxylic acid<br>Cu/Ni mixed complexes. Optics and Laser Technology, 2021, 144, 107418.                                                                 | 4.6 | 7         |
| 29 | Direct writing of Cu-based micropatterns inside Cu <sub>2</sub> 0 nanosphere films using green femtosecond laser reductive sintering. Optical Materials Express, 2020, 10, 2533.                                                              | 3.0 | 7         |
| 30 | Nonplanar surface structures of inorganic materials fabricated by femtosecond laser lithography.<br>Proceedings of SPIE, 2008, , .                                                                                                            | 0.8 | 3         |
| 31 | Large refractive index changes of a chemically amplified photoresist in femtosecond laser nonlinear<br>lithography. Optics Express, 2011, 19, 7673.                                                                                           | 3.4 | 3         |
| 32 | Fabrication of a Cr Nanoporous Thin Film via Sputter Deposition and Investigation of Its Applicability<br>as a Water-oil Separation Electrode in a MEMS Moisture Sensor. IEEJ Transactions on Sensors and<br>Micromachines, 2017, 137, 15-22. | 0.1 | 3         |
| 33 | Fabrication of Novel Nanoporous Films in Moisture-in-Oil Sensors via Chemical Dealloying of Cu-Cr<br>using Combinatorial Search of Cu–Cr Alloy Compositions. MRS Advances, 2018, 3, 225-232.                                                  | 0.9 | 2         |
| 34 | Fabrication of a Novel Nanoporous Film via Chemical Dealloying of a Cu–Cr Alloy for Sensing<br>Moisture in Oil. Journal of Microelectromechanical Systems, 2019, 28, 279-289.                                                                 | 2.5 | 2         |
| 35 | Development of a fast atom beam gun for surface-activated bonding. Precision Engineering, 2020, 62, 106-112.                                                                                                                                  | 3.4 | 2         |
| 36 | Effect of Different Solvents on Cu Micropatterns Formed via Femtosecond Laser Reduction<br>Patterning. International Journal of Automation Technology, 2016, 10, 934-940.                                                                     | 1.0 | 2         |

MIZUE MIZOSHIRI

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Reverse Lift-Off Process and Application for Cu-Zr-Ti Metallic Glass Thick Film Structures.<br>International Journal of Automation Technology, 2015, 9, 646-654.                                          | 1.0 | 2         |
| 38 | SiO 2 -based variable microfluidic lenses fabricated by femtosecond laser lithography-assisted micromachining. , 2008, , .                                                                                |     | 1         |
| 39 | Fabrication of CuO-based antireflection structures using self-arranged submicron SiO2spheres for thermoelectric solar generation. Japanese Journal of Applied Physics, 2016, 55, 06GP07.                  | 1.5 | 1         |
| 40 | Direct-writing of copper-based micropatterns on polymer substrates using femtosecond laser reduction of copper (II) oxide nanoparticles. , 2017, , .                                                      |     | 1         |
| 41 | Fabrication of a novel nanoporous film by chemical dealloying of CU-CR and its application for a sensor. , 2018, , .                                                                                      |     | 1         |
| 42 | Preparation of Nonspherical Monodisperse Polydimethylsiloxane Microparticles for Self-assembly<br>Fabrication of Periodic Structures. IEEJ Transactions on Sensors and Micromachines, 2019, 139, 132-136. | 0.1 | 1         |
| 43 | These five years. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2009, 78, 571-573.                                                                                                             | 0.1 | 1         |
| 44 | Direct writing of three-dimensional Cu-based sensors using femtosecond laser reduction of CuO nanoparticles. , 2018, , .                                                                                  |     | 1         |
| 45 | Bonding of single-layered Cu <sub>2</sub> O nanospheres on Cu substrates in irradiating near-infrared femtosecond laser pulses. Japanese Journal of Applied Physics, 0, , .                               | 1.5 | 1         |
| 46 | Silica-based diffractive/refractive hybrid microlenses fabricated by multiphoton lithography. , 2008, , .                                                                                                 |     | 0         |
| 47 | Nonlinear lithographic properties by femtosecond laser pulses using a low-NA lens. , 2010, , .                                                                                                            |     | Ο         |
| 48 | Thermoelectric thick film patterns formed by using thermally-assisted sputtering method and silicone lift-off masks. , 2013, , .                                                                          |     | 0         |
| 49 | Design of CuO anti-reflection structure for thin-film thermoelectric generator. , 2014, , .                                                                                                               |     | 0         |
| 50 | Combinatorial searching system for electrolysis catalytic materials. , 2015, , .                                                                                                                          |     | 0         |
| 51 | Thin-film thermoelectric generator with ball lens for using near-infrared solar energy. , 2015, , .                                                                                                       |     | Ο         |
| 52 | Fabrication of Plasmon Filters for Highly Sensitive Observation of Magnetic Domains by<br>Magneto-Optical Kerr Effect. , 2018, , .                                                                        |     | 0         |
| 53 | Basic research on micro processing characteristics of reverse lift-off process. , 2018, , .                                                                                                               |     | 0         |
| 54 | J2220102 Fabrication of device for high throughput evaluation of magnetostriction and relative permeability. The Proceedings of Mechanical Engineering Congress Japan, 2015, 2015,2220102                 | 0.0 | 0         |

| #  | Article                                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | MoB-2-2 REDUCTION PROPERTIES OF NICKEL MICROSTRUCTURES FABRICATED BY DIRECT FEMTOSECOND<br>LASER REDUCTION PATTERNING. Proceedings of JSME-IIP/ASME-ISPS Joint Conference on<br>Micromechatronics for Information and Precision Equipment IIP/ISPS Joint MIPE, 2015, 2015,<br>MoB-2-2-1- MoB-2-2-3. | 0.0 | 0         |
| 56 | J2220101 Characteristics of Ti-Ni-Cu Thin Film Metallic Glasses/Thin Film Shape Memory Alloys Before<br>and After Crystallization. The Proceedings of Mechanical Engineering Congress Japan, 2015, 2015,<br>_J2220101J2220101                                                                       | 0.0 | 0         |
| 57 | MoB-2-1 CHARACTERISTICS OF TI-NI-ZR THIN FILM METALLIC GLASSES FOR MEMS WITH THREE DIMENSIONAL STRUCTURE. Proceedings of JSME-IIP/ASME-ISPS Joint Conference on Micromechatronics for Information and Precision Equipment IIP/ISPS Joint MIPE, 2015, 2015, _MoB-2-1-1MoB-2-1-3.                     | 0.0 | 0         |
| 58 | Fabrication Process of Antimony Telluride and Bismuth Telluride Micro Thermoelectric Generator.<br>International Journal of Automation Technology, 2015, 9, 612-618.                                                                                                                                | 1.0 | 0         |
| 59 | Characteristics for administrating liquid medicine in passive drug delivery system. The Proceedings of<br>Mechanical Engineering Congress Japan, 2016, 2016, J2230101.                                                                                                                              | 0.0 | 0         |
| 60 | Polymer-based blood vessel models with micro-temperature sensors in EVE. , 2017, , .                                                                                                                                                                                                                |     | 0         |
| 61 | Direct writing of Cu-Ni-based thermoelectric micropatterns using femtosecond laser reduction of<br>CuO and NiO mixed nanoparticles. The Proceedings of Conference of Tokai Branch, 2018, 2018.67, 701.                                                                                              | 0.0 | 0         |
| 62 | Direct-Writing Technique Using Femtosecond Laser Reductive Sintering of CuO Nanoparticles. The<br>Review of Laser Engineering, 2018, 46, 257.                                                                                                                                                       | 0.0 | 0         |
| 63 | Femtosecond laser direct writing of Cu-based fine patterns using Cu2O nanospheres. , 2018, , .                                                                                                                                                                                                      |     | 0         |
| 64 | High-contrast imaging of magnetic domains by magneto-optical Kerr effect using plasmon filters. ,<br>2019, , .                                                                                                                                                                                      |     | 0         |
| 65 | Direct writing of Cu-based flexible thermal detectors using femtosecond laser-induced reduction. , 2019, , .                                                                                                                                                                                        |     | 0         |
| 66 | Femtosecond laser direct-writing technique using reduction of glyoxylic acid metal complexes. , 2019, , .                                                                                                                                                                                           |     | 0         |
| 67 | Fabrication of Cu-based microstructures by reduction of Cu <sub>2</sub> O nanoparticles using green femtosecond laser pulses. The Proceedings of Conference of Hokuriku-Shinetsu Branch, 2020, 2020.57, S032.                                                                                       | 0.0 | 0         |
| 68 | Design and fabrication of micro-Fresnel lenses for thermoelectric conversion of near-infrared solar<br>light. The Proceedings of Conference of Hokuriku-Shinetsu Branch, 2020, 2020.57, S034.                                                                                                       | 0.0 | 0         |
| 69 | Cobalt Precipitation from Glyoxylic Acid Cobalt Complex by Irradiating Femtosecond Laser Pulses. IEEJ<br>Transactions on Electronics, Information and Systems, 2022, 142, 466-469.                                                                                                                  | 0.2 | 0         |