
Soo-Jin Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8738350/publications.pdf Version: 2024-02-01

SOO-LIN YANG

#	Article	IF	CITATIONS
1	Failures in Clinical Treatment of <i>Staphylococcus aureus</i> Infection with Daptomycin Are Associated with Alterations in Surface Charge, Membrane Phospholipid Asymmetry, and Drug Binding. Antimicrobial Agents and Chemotherapy, 2008, 52, 269-278.	3.2	305
2	The Bacterial Defensin Resistance Protein MprF Consists of Separable Domains for Lipid Lysinylation and Antimicrobial Peptide Repulsion. PLoS Pathogens, 2009, 5, e1000660.	4.7	283
3	Analysis of Cell Membrane Characteristics of In Vitro-Selected Daptomycin-Resistant Strains of Methicillin-Resistant <i>Staphylococcus aureus</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 2312-2318.	3.2	210
4	The Staphylococcus aureus Two-Component Regulatory System, GraRS, Senses and Confers Resistance to Selected Cationic Antimicrobial Peptides. Infection and Immunity, 2012, 80, 74-81.	2.2	159
5	Enhanced Expression of <i>dltABCD</i> Is Associated with the Development of Daptomycin Nonsusceptibility in a Clinical Endocarditis Isolate of <i>Staphylococcus aureus</i> . Journal of Infectious Diseases, 2009, 200, 1916-1920.	4.0	147
6	Cell Wall Thickening Is Not a Universal Accompaniment of the Daptomycin Nonsusceptibility Phenotype in <i>Staphylococcus aureus</i> : Evidence for Multiple Resistance Mechanisms. Antimicrobial Agents and Chemotherapy, 2010, 54, 3079-3085.	3.2	128
7	Regulation of mprF in Daptomycin-Nonsusceptible Staphylococcus aureus Strains. Antimicrobial Agents and Chemotherapy, 2009, 53, 2636-2637.	3.2	117
8	Correlation of Daptomycin Resistance in a Clinical <i>Staphylococcus aureus</i> Strain with Increased Cell Wall Teichoic Acid Production and <scp>d</scp> -Alanylation. Antimicrobial Agents and Chemotherapy, 2011, 55, 3922-3928.	3.2	117
9	Phenotypic and Genotypic Characterization of Daptomycin-Resistant Methicillin-Resistant Staphylococcus aureus Strains: Relative Roles of mprF and dlt Operons. PLoS ONE, 2014, 9, e107426.	2.5	105
10	Frequency and Distribution of Single-Nucleotide Polymorphisms within <i>mprF</i> in Methicillin-Resistant Staphylococcus aureus Clinical Isolates and Their Role in Cross-Resistance to Daptomycin and Host Defense Antimicrobial Peptides. Antimicrobial Agents and Chemotherapy, 2015, 59, 4930-4937.	3.2	102
11	Increased Cell Wall Teichoic Acid Production and D-alanylation Are Common Phenotypes among Daptomycin-Resistant Methicillin-Resistant Staphylococcus aureus (MRSA) Clinical Isolates. PLoS ONE, 2013, 8, e67398.	2.5	86
12	The role of proton motive force in expression of theStaphylococcus aureus cidandlrgoperons. Molecular Microbiology, 2006, 59, 1395-1404.	2.5	80
13	Causal Role of Single Nucleotide Polymorphisms within the <i>mprF</i> Gene of Staphylococcus aureus in Daptomycin Resistance. Antimicrobial Agents and Chemotherapy, 2013, 57, 5658-5664.	3.2	76
14	Emergence of Daptomycin Resistance in Daptomycin-NaÃ ⁻ ve Rabbits with Methicillin-Resistant Staphylococcus aureus Prosthetic Joint Infection Is Associated with Resistance to Host Defense Cationic Peptides and mprF Polymorphisms. PLoS ONE, 2013, 8, e71151.	2.5	76
15	Heterogeneity of <i>mprF</i> Sequences in Methicillin-Resistant Staphylococcus aureus Clinical Isolates: Role in Cross-Resistance between Daptomycin and Host Defense Antimicrobial Peptides. Antimicrobial Agents and Chemotherapy, 2014, 58, 7462-7467.	3.2	59
16	Antimicrobial resistance in Salmonella enterica serovars Enteritidis and Typhimurium isolated from animals in Korea: comparison of phenotypic and genotypic resistance characterization. Veterinary Microbiology, 2002, 86, 295-301.	1.9	55
17	Role of the LytSR Two-Component Regulatory System in Adaptation to Cationic Antimicrobial Peptides in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2013, 57, 3875-3882.	3.2	46
18	Dysregulation of <i>mprF</i> and <i>dltABCD</i> expression among daptomycin-non-susceptible MRSA clinical isolates. Journal of Antimicrobial Chemotherapy, 2016, 71, 2100-2104.	3.0	44

SOO-JIN YANG

#	Article	IF	CITATIONS
19	Site-Specific Mutation of the Sensor Kinase GraS in Staphylococcus aureus Alters the Adaptive Response to Distinct Cationic Antimicrobial Peptides. Infection and Immunity, 2014, 82, 5336-5345.	2.2	41
20	Phenotypic and genotypic correlates of daptomycin-resistant methicillin-susceptible Staphylococcus aureus clinical isolates. Journal of Microbiology, 2017, 55, 153-159.	2.8	34
21	The GraS Sensor in Staphylococcus aureus Mediates Resistance to Host Defense Peptides Differing in Mechanisms of Action. Infection and Immunity, 2016, 84, 459-466.	2.2	33
22	Livestock-associated methicillin-resistant <i>Staphylococcus aureus</i> in Korea: antimicrobial resistance and molecular characteristics of LA-MRSA strains isolated from pigs, pig farmers, and farm environment. Journal of Veterinary Science, 2020, 21, e2.	1.3	30
23	Genotypic and Phenotypic Characterization of Methicillin-Resistant Staphylococcus aureus Isolated from Bovine Mastitic Milk in Korea. Journal of Food Protection, 2016, 79, 1725-1732.	1.7	28
24	Nucleotide-Binding Oligomerization Domain 2 Contributes to Limiting Growth of Mycobacterium abscessus in the Lung of Mice by Regulating Cytokines and Nitric Oxide Production. Frontiers in Immunology, 2017, 8, 1477.	4.8	28
25	Carriage of <i>Staphylococcus schleiferi</i> from canine otitis externa: antimicrobial resistance profiles and virulence factors associated with skin infection. Journal of Veterinary Science, 2019, 20, e6.	1.3	26
26	Mechanisms of quinolone resistance in <i>Escherichia coli</i> isolated from companion animals, pet-owners, and non-pet-owners. Journal of Veterinary Science, 2017, 18, 449.	1.3	21
27	Antimicrobial resistance and virulence profiles of Enterococcus spp. isolated from horses in korea. Comparative Immunology, Microbiology and Infectious Diseases, 2016, 48, 6-13.	1.6	17
28	Impact of Multiple Single-Nucleotide Polymorphisms Within <i>mprF</i> on Daptomycin Resistance in <i>Staphylococcus aureus</i> . Microbial Drug Resistance, 2018, 24, 1075-1081.	2.0	16
29	Isolation and characterization of antimicrobial-resistant <i>Escherichia coli</i> from national horse racetracks and private horse-riding courses in Korea. Journal of Veterinary Science, 2016, 17, 199.	1.3	15
30	Species Distribution, Antimicrobial Resistance, and Enterotoxigenicity of Non-aureus Staphylococci in Retail Chicken Meat. Antibiotics, 2020, 9, 809.	3.7	14
31	Potential role of host defense antimicrobial peptide resistance in increased virulence of health care-associated MRSA strains of sequence type (ST) 5 versus livestock-associated and community-associated MRSA strains of ST72. Comparative Immunology, Microbiology and Infectious Diseases. 2019. 62. 13-18.	1.6	12
32	Prevalence and characteristics of livestock-associated methicillin-susceptibleStaphylococcus aureusin the pork production chain in Korea. Journal of Veterinary Science, 2019, 20, e69.	1.3	11
33	Occurrence and Characteristics of Methicillin-Resistant and -Susceptible Staphylococcus aureus Isolated from the Beef Production Chain in Korea. Food Science of Animal Resources, 2020, 40, 401-414.	4.1	11
34	Profiles of Non-aureus Staphylococci in Retail Pork and Slaughterhouse Carcasses: Prevalence, Antimicrobial Resistance, and Genetic Determinant of Fusidic Acid Resistance. Food Science of Animal Resources, 2022, 42, 225-239.	4.1	10
35	Co-occurrence of cfr-mediated linezolid-resistance in ST398 LA-MRSA and non-aureus staphylococci isolated from a pig farm. Veterinary Microbiology, 2022, 266, 109336.	1.9	10
36	Type I Interferons Are Involved in the Intracellular Growth Control of Mycobacterium abscessus by Mediating NOD2-Induced Production of Nitric Oxide in Macrophages. Frontiers in Immunology, 2021, 12, 738070.	4.8	9

SOO-JIN YANG

#	Article	IF	CITATIONS
37	Comparative assessment of genotypic and phenotypic correlates of Staphylococcus pseudintermedius strains isolated from dogs with otitis externa and healthy dogs. Comparative Immunology, Microbiology and Infectious Diseases, 2020, 70, 101376.	1.6	8
38	Emergence of Daptomycin-Nonsusceptible Methicillin-ResistantStaphylococcus aureusClinical Isolates Among Daptomycin-Naive Patients in Korea. Microbial Drug Resistance, 2018, 24, 534-541.	2.0	5
39	Role of the Staphylococcus aureus Extracellular Loop of GraS in Resistance to Distinct Human Defense Peptides in PMN and Invasive Cardiovascular infections. Infection and Immunity, 2021, 89, e0034721.	2.2	5
40	Genomic Information on Linezolid-Resistant Sequence-Type 398 Livestock-Associated Methicillin-Resistant Staphylococcus aureus Isolated from a Pig. Foodborne Pathogens and Disease, 2021, 18, 378-387.	1.8	4
41	Profiles of coagulase-positive and -negative staphylococci in retail pork: prevalence, antimicrobial resistance, enterotoxigenicity, and virulence factors. Animal Bioscience, 2021, 34, 734-742.	2.0	3
42	Complete genome sequence of a methicillin-resistant Staphylococcus schleiferi strain from canine otitis externa in Korea. Journal of Veterinary Science, 2020, 21, e11.	1.3	3
43	Adaptations of Vancomycin-Intermediate Sequence Type 72 Methicillin-ResistantStaphylococcus aureusfor Daptomycin Nonsusceptibility. Microbial Drug Resistance, 2018, 24, 1489-1496.	2.0	2
44	Profiles of coagulase-positive and -negative staphylococci in retail pork: prevalence, antimicrobial resistance, enterotoxigenicity, and virulence factors. Animal Bioscience, 2021, 34, 734-742.	2.0	2
45	Multilocus sequence type-dependent activity of human and animal cathelicidins against community-, hospital-, and livestock-associated methicillin-resistant Staphylococcus aureus isolates. Journal of Animal Science and Technology, 2022, 64, 515-530.	2.5	2
46	Genetic Factors Associated with Increased Host Defense Antimicrobial Peptide Resistance in Sequence Type 5 Healthcare-Associated MRSA Clinical Isolates. Biomolecules, 2020, 10, 1415.	4.0	0