Daihai He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8738272/publications.pdf

Version: 2024-02-01

		101543	7	'1685
175	7,771	36		76
papers	citations	h-index		g-index
209	209	209		9393
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	A continuous age-specific standardized mortality ratio for estimating the unascertained rates in the early epidemic of COVID-19 in different regions. Journal of Applied Statistics, 2023, 50, 2504-2517.	1.3	1
2	Influenza seasonality and its environmental driving factors in mainland China and Hong Kong. Science of the Total Environment, 2022, 818, 151724.	8.0	32
3	COVID-19 and Lassa fever in Nigeria: A deadly alliance?. International Journal of Infectious Diseases, 2022, 117, 45-47.	3.3	9
4	The Heterogeneous Severity of COVID-19 in African Countries: A Modeling Approach. Bulletin of Mathematical Biology, 2022, 84, 32.	1.9	18
5	Modelling of Waning of Immunity and Reinfection Induced Antibody Boosting of SARS-CoV-2 in Manaus, Brazil. International Journal of Environmental Research and Public Health, 2022, 19, 1729.	2.6	2
6	Two waves of COIVD-19 in Brazilian cities and vaccination impact. Mathematical Biosciences and Engineering, 2022, 19, 4657-4671.	1.9	8
7	Multiple COVID-19 Waves and Vaccination Effectiveness in the United States. International Journal of Environmental Research and Public Health, 2022, 19, 2282.	2.6	36
8	Superspreading potential of SARS-CoV-2 Delta variants under intensive disease control measures in China. Journal of Travel Medicine, 2022, 29, .	3.0	7
9	Changing Epidemiology of TB in Shandong, China Driven by Demographic Changes. Frontiers in Medicine, 2022, 9, 810382.	2.6	O
10	Infection fatality rate and infection attack rate of COVID-19 in South American countries. Infectious Diseases of Poverty, 2022, 11, 40.	3.7	12
11	Mathematical analysis of Lassa fever epidemic with effects of environmental transmission. Results in Physics, 2022, 35, 105335.	4.1	9
12	Exported cases were infected on the way: A conjecture derived from analysis on Hong Kong monthly exported COVID-19 cases. International Journal of Infectious Diseases, 2022, 118, 62-64.	3.3	2
13	Seroprevalence and infection attack rate of COVID-19 in Indian cities. Infectious Disease Modelling, 2022, 7, 25-32.	1.9	6
14	Heterogeneous epidemic modelling within an enclosed space and corresponding Bayesian estimation. Infectious Disease Modelling, 2022, 7, 1-24.	1.9	6
15	The non-pharmaceutical interventions may affect the advantage in transmission of mutated variants during epidemics: A conceptual model for COVID-19. Journal of Theoretical Biology, 2022, 542, 111105.	1.7	5
16	Reduction in the infection fatality rate of Omicron variant compared with previous variants in South Africa. International Journal of Infectious Diseases, 2022, 120, 146-149.	3.3	39
17	Large-scale synchronized replacement of Alpha (B.1.1.7) variant by the Delta (B.1.617.2) variant of SARS-COV-2 in the COVID-19 pandemic Mathematical Biosciences and Engineering, 2022, 19, 3591-3596.	1.9	2
18	Impact of low vaccine coverage on the resurgence of COVID-19 in Central and Eastern Europe. One Health, 2022, 14, 100402.	3.4	20

#	Article	IF	Citations
19	Transmission dynamics of COVID-19 pandemic with combined effects of relapse, reinfection and environmental contribution: A modeling analysis. Results in Physics, 2022, 38, 105653.	4.1	5
20	Modelling COVID-19 outbreak on the Diamond Princess ship using the public surveillance data. Infectious Disease Modelling, 2022, 7, 189-195.	1.9	3
21	Characterizing superspreading potential of infectious disease: Decomposition of individual transmissibility. PLoS Computational Biology, 2022, 18, e1010281.	3.2	5
22	Post pandemic fatigue: what are effective strategies?. Scientific Reports, 2022, 12, .	3.3	6
23	Regional heterogeneity of in-hospital mortality of COVID-19 in Brazil. Infectious Disease Modelling, 2022, 7, 364-373.	1.9	4
24	The impact of contact patterns of sexual networks on Zika virus spread: A case study in Costa Rica. Applied Mathematics and Computation, 2021, 393, 125765.	2.2	2
25	Modelling the effects of the contaminated environments on tuberculosis in Jiangsu, China. Journal of Theoretical Biology, 2021, 508, 110453.	1.7	26
26	The changing patterns of COVID-19 transmissibility during the social unrest in the United States: A nationwide ecological study with a before-and-after comparison. One Health, 2021, 12, 100201.	3.4	8
27	Excess pneumonia and influenza death as herald wave of COVID-19 in England and Wales, United Kingdom. Journal of Infection, 2021, 82, 282-327.	3.3	2
28	Decreased Case Fatality Rate of COVIDâ€19 in the Second Wave: A study in 53 countries or regions. Transboundary and Emerging Diseases, 2021, 68, 213-215.	3.0	136
29	Mathematical modeling and analysis of schistosomiasis transmission dynamics. International Journal of Modeling, Simulation, and Scientific Computing, 2021, 12, 2150021.	1.4	1
30	Family exposure and the impact of containment measures to children with coronavirus disease 2019 outside Hubei, China: a cross-sectional study. Translational Pediatrics, 2021, 10, 92-102.	1.2	0
31	Attach importance of the bootstrap <i>t</i> test against Student's <i>t</i> test in clinical epidemiology: a demonstrative comparison using COVID-19 as an example. Epidemiology and Infection, 2021, 149, e107.	2.1	3
32	Effect of ambient air pollution on tuberculosis risks and mortality in Shandong, China: a multi-city modeling study of the short- and long-term effects of pollutants. Environmental Science and Pollution Research, 2021, 28, 27757-27768.	5.3	21
33	The shortage of hospital beds for COVID-19 and non-COVID-19 patients during the lockdown of Wuhan, China. Annals of Translational Medicine, 2021, 9, 200-200.	1.7	24
34	Inferencing superspreading potential using zero-truncated negative binomial model: exemplification with COVID-19. BMC Medical Research Methodology, 2021, 21, 30.	3.1	23
35	Obesity and COVID-19 in Adult Patients With Diabetes. Diabetes, 2021, 70, 1061-1069.	0.6	19
36	Estimating the Instantaneous Asymptomatic Proportion With a Simple Approach: Exemplified With the Publicly Available COVID-19 Surveillance Data in Hong Kong. Frontiers in Public Health, 2021, 9, 604455.	2.7	4

#	Article	IF	CITATIONS
37	High Infection Fatality Rate Among Elderly and Risk Factors Associated With Infection Fatality Rate and Asymptomatic Infections of COVID-19 Cases in Hong Kong. Frontiers in Medicine, 2021, 8, 678347.	2.6	7
38	Dynamics analysis of typhoid fever with public health education programs and final epidemic size relation. Results in Applied Mathematics, 2021, 10, 100153.	1.3	9
39	Synchronized nonpharmaceutical interventions for the control of COVID-19. Nonlinear Dynamics, 2021, 106, 1-13.	5.2	6
40	Reinfection or Reactivation of Severe Acute Respiratory Syndrome Coronavirus 2: A Systematic Review. Frontiers in Public Health, 2021, 9, 663045.	2.7	29
41	Estimating the Prevalence of Asymptomatic COVID-19 Cases and Their Contribution in Transmission - Using Henan Province, China, as an Example. Frontiers in Medicine, 2021, 8, 591372.	2.6	10
42	How Transportation Restriction Shapes the Relationship Between Ambient Nitrogen Dioxide and COVID-19 Transmissibility: An Exploratory Analysis. Frontiers in Public Health, 2021, 9, 697491.	2.7	0
43	Predicting Antituberculosis Drug–Induced Liver Injury Using an Interpretable Machine Learning Method: Model Development and Validation Study. JMIR Medical Informatics, 2021, 9, e29226.	2.6	8
44	Using Proper Mean Generation Intervals in Modeling of COVID-19. Frontiers in Public Health, 2021, 9, 691262.	2.7	20
45	Transmission dynamics of SARS-CoV-2: A modeling analysis with high-and-moderate risk populations. Results in Physics, 2021, 26, 104290.	4.1	19
46	Vertical Transmission of SARS-CoV-2: A Systematic Review of Systematic Reviews. Viruses, 2021, 13, 1877.	3.3	35
47	A Zika Endemic Model for the Contribution of Multiple Transmission Routes. Bulletin of Mathematical Biology, 2021, 83, 111.	1.9	8
48	Estimating the generation interval and inferring the latent period of COVID-19 from the contact tracing data. Epidemics, 2021, 36, 100482.	3.0	55
49	Estimation of COVID-19 under-ascertainment in Kano, Nigeria during the early phase of the epidemics. AEJ - Alexandria Engineering Journal, 2021, 60, 4547-4554.	6.4	14
50	Shrinkage in serial intervals across transmission generations of COVID-19. Journal of Theoretical Biology, 2021, 529, 110861.	1.7	1
51	An analysis on the trend of AIDS/HIV incidence in Chongqing and Shenzhen, China from 2005–2015 based on Age-Period-Cohort model. Mathematical Biosciences and Engineering, 2021, 18, 6961-6977.	1.9	5
52	Mathematical modeling of COVID-19 epidemic with effect of awareness programs. Infectious Disease Modelling, 2021, 6, 448-460.	1.9	83
53	Infection fatality ratio and case fatality ratio of COVID-19. International Journal of Infectious Diseases, 2021, 113, 43-46.	3.3	25
54	An Investigation of the Risk Factors Associated With Anti-Tuberculosis Drug-Induced Liver Injury or Abnormal Liver Functioning in 757 Patients With Pulmonary Tuberculosis. Frontiers in Pharmacology, 2021, 12, 708522.	3.5	13

#	Article	IF	CITATIONS
55	The Disease Severity and Clinical Outcomes of the SARS-CoV-2 Variants of Concern. Frontiers in Public Health, 2021, 9, 775224.	2.7	156
56	Forecast of the COVID-19 trend in India: A simple modelling approach. Mathematical Biosciences and Engineering, 2021, 18, 9775-9786.	1.9	19
57	Ratio of asymptomatic COVID-19 cases among ascertained SARS-CoV-2 infections in different regions and population groups in 2020: a systematic review and meta-analysis including 130 123 infections from 241 studies. BMJ Open, 2021, 11, e049752.	1.9	29
58	Antiprotozoal Effect of Snake Venoms and Their Fractions: A Systematic Review. Pathogens, 2021, 10, 1632.	2.8	8
59	Editorial: Interference of COVID-19 and Influenza Infections. Frontiers in Public Health, 2021, 9, 818199.	2.7	1
60	The Second Wave of COVID-19 in South and Southeast Asia and the Effects of Vaccination. Frontiers in Medicine, 2021, 8, 773110.	2.6	18
61	The co-circulating transmission dynamics of SARS-CoV-2 Alpha and Eta variants in Nigeria: A retrospective modeling study of COVID-19. Journal of Global Health, 2021, 11, 05028.	2.7	4
62	The long-term changing dynamics of dengue infectivity in Guangdong, China, from 2008–2018: a modelling analysis. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2020, 114, 62-71.	1.8	14
63	Mechanistic modelling of multiple waves in an influenza epidemic or pandemic. Journal of Theoretical Biology, 2020, 486, 110070.	1.7	7
64	Low dispersion in theÂinfectiousness of COVID-19 cases implies difficulty in control. BMC Public Health, 2020, 20, 1558.	2.9	21
65	Initial COVID-19 Transmissibility and Three Gaseous Air Pollutants (NO2, SO2, and CO): A Nationwide Ecological Study in China. Frontiers in Medicine, 2020, 7, 575839.	2.6	6
66	Influenza versus COVID-19 cases among influenza-like illness patients in travelers from Wuhan to Hong Kong in January 2020. International Journal of Infectious Diseases, 2020, 101, 323-325.	3.3	1
67	Age, source, and future risk of COVID-19 infections in two settings of Hong Kong and Singapore. BMC Research Notes, 2020, 13, 336.	1.4	1
68	Estimation of exponential growth rate and basic reproduction number of the coronavirus disease 2019 (COVID-19) in Africa. Infectious Diseases of Poverty, 2020, 9, 96.	3.7	79
69	Four-tier response system and spatial propagation of COVID-19 in China by a network model. Mathematical Biosciences, 2020, 330, 108484.	1.9	35
70	<p>Modelling the Measles Outbreak at Hong Kong International Airport in 2019: A Data-Driven Analysis on the Effects of Timely Reporting and Public Awareness</p> . Infection and Drug Resistance, 2020, Volume 13, 1851-1861.	2.7	4
71	Estimation of Local Novel Coronavirus (COVID-19) Cases in Wuhan, China from Off-Site Reported Cases and Population Flow Data from Different Sources. Frontiers in Physics, 2020, 8, .	2.1	5
72	Modeling the 2014–2015 Ebola Virus Disease Outbreaks in Sierra Leone, Guinea, and Liberia with Effect of High- and Low-risk Susceptible Individuals. Bulletin of Mathematical Biology, 2020, 82, 102.	1.9	7

#	Article	IF	CITATIONS
73	Extraordinary curtailment of massive typhus epidemic in the Warsaw Ghetto. Science Advances, 2020, 6, eabc0927.	10.3	13
74	Effects of particulate matter exposure on the transmissibility and case fatality rate of COVID-19: A Nationwide Ecological Study in China. Journal of Travel Medicine, 2020, 27, .	3.0	13
75	Unexpected positive correlation between human development index and risk of infections and deaths of COVID-19 in Italy. One Health, 2020, 10, 100174.	3.4	34
76	Seasonal influenza activity in young children before the COVIDâ€19 outbreak in Wuhan, China. Transboundary and Emerging Diseases, 2020, 67, 2277-2279.	3.0	2
77	Estimating the Serial Interval of the Novel Coronavirus Disease (COVID-19): A Statistical Analysis Using the Public Data in Hong Kong From January 16 to February 15, 2020. Frontiers in Physics, 2020, 8, .	2.1	53
78	Blood pressure control and adverse outcomes of COVID-19 infection in patients with concomitant hypertension in Wuhan, China. Hypertension Research, 2020, 43, 1267-1276.	2.7	91
79	The time serial distribution and influencing factors of asymptomatic COVID-19 cases in Hong Kong. One Health, 2020, 10, 100166.	3.4	6
80	Preliminary estimation of the novel coronavirus disease (COVID-19) cases in Iran: A reply to Sharifi. International Journal of Infectious Diseases, 2020, 95, 429-430.	3.3	1
81	Imitation dynamics in the mitigation of the novel coronavirus disease (COVID-19) outbreak in Wuhan, China from 2019 to 2020. Annals of Translational Medicine, 2020, 8, 448-448.	1.7	60
82	Quantifying the improvement in confirmation efficiency of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the early phase of the outbreak in Hong Kong in 2020. International Journal of Infectious Diseases, 2020, 96, 284-287.	3.3	5
83	Estimating the serial interval of the novel coronavirus disease (COVIDâ€19) based on the public surveillance data in Shenzhen, China, from 19 January to 22 February 2020. Transboundary and Emerging Diseases, 2020, 67, 2818-2822.	3.0	29
84	Early estimation of the case fatality rate of COVID-19 in mainland China: a data-driven analysis. Annals of Translational Medicine, 2020, 8, 128-128.	1.7	135
85	Serial interval in determining the estimation of reproduction number of the novel coronavirus disease (COVID-19) during the early outbreak. Journal of Travel Medicine, 2020, 27, .	3.0	43
86	A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action. International Journal of Infectious Diseases, 2020, 93, 211-216.	3.3	859
87	COVID-19 and gender-specific difference: Analysis of public surveillance data in Hong Kong and Shenzhen, China, from January 10 to February 15, 2020. Infection Control and Hospital Epidemiology, 2020, 41, 750-751.	1.8	53
88	The Long-Term Periodic Patterns of Global Rabies Epidemics Among Animals: A Modeling Analysis. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050047.	1.7	3
89	Real-time estimation of the reproduction number of the novel coronavirus disease (COVID-19) in China in 2020 based on incidence data. Annals of Translational Medicine, 2020, 8, 689-689.	1.7	15
90	The ambient ozone and COVID-19 transmissibility in China: A data-driven ecological study of 154 cities. Journal of Infection, 2020, 81, e9-e11.	3.3	27

#	Article	IF	CITATIONS
91	Individualised risk prediction model for new-onset, progression and regression of chronic kidney disease in a retrospective cohort of patients with type 2 diabetes under primary care in Hong Kong. BMJ Open, 2020, 10, e035308.	1.9	9
92	Comparing COVID-19 and the 1918–19 influenza pandemics in the United Kingdom. International Journal of Infectious Diseases, 2020, 98, 67-70.	3.3	38
93	A re-analysis in exploring the association between temperature and COVID-19 transmissibility: an ecological study with 154 Chinese cities. European Respiratory Journal, 2020, 56, 2001253.	6.7	34
94	Public awareness, news promptness and the measles outbreak in Hong Kong from March to April, 2019. Infectious Diseases, 2020, 52, 284-290.	2.8	4
95	Mathematical modeling and analysis of meningococcal meningitis transmission dynamics. International Journal of Biomathematics, 2020, 13, 2050006.	2.9	9
96	Mechanistic modelling of the large-scale Lassa fever epidemics in Nigeria from 2016 to 2019. Journal of Theoretical Biology, 2020, 493, 110209.	1.7	44
97	Quantifying the association between domestic travel and the exportation of novel coronavirus (2019-nCoV) cases from Wuhan, China in 2020: a correlational analysis. Journal of Travel Medicine, 2020, 27, .	3.0	71
98	The basic reproduction number of novel coronavirus (2019-nCoV) estimation based on exponential growth in the early outbreak in China from 2019 to 2020: A reply to Dhungana. International Journal of Infectious Diseases, 2020, 94, 148-150.	3.3	24
99	Large-scale Lassa fever outbreaks in Nigeria: quantifying the association between disease reproduction number and local rainfall. Epidemiology and Infection, 2020, 148, e4.	2.1	32
100	Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. International Journal of Infectious Diseases, 2020, 92, 214-217.	3.3	1,428
101	The association between domestic train transportation and novel coronavirus (2019-nCoV) outbreak in China from 2019 to 2020: A data-driven correlational report. Travel Medicine and Infectious Disease, 2020, 33, 101568.	3.0	132
102	Estimating the Unreported Number of Novel Coronavirus (2019-nCoV) Cases in China in the First Half of January 2020: A Data-Driven Modelling Analysis of the Early Outbreak. Journal of Clinical Medicine, 2020, 9, 388.	2.4	378
103	New estimates of the Zika virus epidemic attack rate in Northeastern Brazil from 2015 to 2016: A modelling analysis based on Guillain-Barré Syndrome (GBS) surveillance data. PLoS Neglected Tropical Diseases, 2020, 14, e0007502.	3.0	16
104	Preliminary estimates of the reproduction number of the coronavirus disease (COVID-19) outbreak in Republic of Korea and Italy by 5 March 2020. International Journal of Infectious Diseases, 2020, 95, 308-310.	3.3	77
105	Positive RT-PCR tests among discharged COVID-19 patients in Shenzhen, China. Infection Control and Hospital Epidemiology, 2020, 41, 1110-1112.	1.8	23
106	The relative transmissibility of asymptomatic COVID-19 infections among close contacts. International Journal of Infectious Diseases, 2020, 94, 145-147.	3.3	199
107	Preliminary estimation of the novel coronavirus disease (COVID-19) cases in Iran: A modelling analysis based on overseas cases and air travel data. International Journal of Infectious Diseases, 2020, 94, 29-31.	3.3	72
108	Modelling the effective reproduction number of vector-borne diseases: the yellow fever outbreak in Luanda, Angola 2015–2016 as an example. PeerJ, 2020, 8, e8601.	2.0	30

#	Article	IF	CITATIONS
109	Simple framework for real-time forecast in a data-limited situation: the Zika virus (ZIKV) outbreaks in Brazil from 2015 to 2016 as an example. Parasites and Vectors, 2019, 12, 344.	2.5	42
110	Age-Period-Cohort Analysis on the Time Trend of Hepatitis B Incidence in Four Prefectures of Southern Xinjiang, China from 2005 to 2017. International Journal of Environmental Research and Public Health, 2019, 16, 3886.	2.6	8
111	Breast cancer mortality in Chinese women: does migrant status play a role?. Annals of Epidemiology, 2019, 40, 28-34.e2.	1.9	2
112	Mathematical models of transmission dynamics and vaccine strategies in Hong Kong during the 2017–2018 winter influenza season. Journal of Theoretical Biology, 2019, 476, 74-94.	1.7	8
113	Modelling diapause in mosquito population growth. Journal of Mathematical Biology, 2019, 78, 2259-2288.	1.9	40
114	Phase-shifting of the transmissibility of macrolide-sensitive and resistant Mycoplasma pneumoniae epidemics in Hong Kong, from 2015 to 2018. International Journal of Infectious Diseases, 2019, 81, 251-253.	3.3	8
115	A mathematical model to study the 2014–2015 large-scale dengue epidemics in Kaohsiung and Tainan cities in Taiwan, China. Mathematical Biosciences and Engineering, 2019, 16, 3841-3863.	1.9	31
116	Associations between Public Awareness, Local Precipitation, and Cholera in Yemen in 2017. American Journal of Tropical Medicine and Hygiene, 2019, 101, 521-524.	1.4	7
117	Meningitis epidemics shift in sub-Saharan belt. International Journal of Infectious Diseases, 2018, 68, 79-82.	3.3	8
118	Population-Wide Genetic Risk Prediction of Complex Diseases: A Pilot Feasibility Study in Macau Population for Precision Public Healthcare Planning. Scientific Reports, 2018, 8, 1853.	3.3	7
119	Modeling the 2016–2017 Yemen cholera outbreak with the impact of limited medical resources. Journal of Theoretical Biology, 2018, 451, 80-85.	1.7	30
120	Ambient ozone and influenza transmissibility in Hong Kong. European Respiratory Journal, 2018, 51, 1800369.	6.7	50
121	Unsynchronized influenza epidemics in two neighboring subtropical cities. International Journal of Infectious Diseases, 2018, 69, 85-87.	3.3	2
122	Anti-phase synchronization of influenza A/H1N1 and A/H3N2 in Hong Kong and countries in the North Temperate Zone. International Journal of Infectious Diseases, 2018, 66, 42-44.	3.3	6
123	Strategic decision making about travel during disease outbreaks: a game theoretical approach. Journal of the Royal Society Interface, 2018, 15, 20180515.	3.4	24
124	Modelling the skip-and-resurgence of Japanese encephalitis epidemics in Hong Kong. Journal of Theoretical Biology, 2018, 454, 1-10.	1.7	26
125	Modeling the spread of Middle East respiratory syndrome coronavirus in Saudi Arabia. Statistical Methods in Medical Research, 2018, 27, 1968-1978.	1.5	55
126	Modelling the large-scale yellow fever outbreak in Luanda, Angola, and the impact of vaccination. PLoS Neglected Tropical Diseases, 2018, 12, e0006158.	3.0	83

#	Article	lF	CITATIONS
127	HIV epidemics in Shenzhen and Chongqing, China. PLoS ONE, 2018, 13, e0192849.	2.5	16
128	A comparison study of Zika virus outbreaks in French Polynesia, Colombia and the State of Bahia in Brazil. Scientific Reports, 2017, 7, 273.	3.3	31
129	Patterns of influenza vaccination coverage in the United States from 2009 to 2015. International Journal of Infectious Diseases, 2017, 65, 122-127.	3.3	24
130	Spatio-temporal patterns of proportions of influenza B cases. Scientific Reports, 2017, 7, 40085.	3.3	4
131	Modelling the transmission and control strategies of varicella among school children in Shenzhen, China. PLoS ONE, 2017, 12, e0177514.	2.5	10
132	Effects of reactive social distancing on the 1918 influenza pandemic. PLoS ONE, 2017, 12, e0180545.	2.5	30
133	News trends and web search query of HIV/AIDS in Hong Kong. PLoS ONE, 2017, 12, e0185004.	2.5	26
134	Analysing increasing trends of Guillain-Barré Syndrome (GBS) and dengue cases in Hong Kong using meteorological data. PLoS ONE, 2017, 12, e0187830.	2.5	14
135	Prevention and Control of Zika as a Mosquito-Borne and Sexually Transmitted Disease: A Mathematical Modeling Analysis. Scientific Reports, 2016, 6, 28070.	3.3	250
136	The cohort effect in childhood disease dynamics. Journal of the Royal Society Interface, 2016, 13, 20160156.	3.4	10
137	Seasonality of Influenza A(H7N9) Virus in China—Fitting Simple Epidemic Models to Human Cases. PLoS ONE, 2016, 11, e0151333.	2.5	19
138	Differences in the seasonality of Middle East respiratory syndrome coronavirus and influenza in the Middle East. International Journal of Infectious Diseases, 2015, 40, 15-16.	3.3	13
139	Impact of the 2009 H1N1 Pandemic on Age-Specific Epidemic Curves of Other Respiratory Viruses: A Comparison of Pre-Pandemic, Pandemic and Post-Pandemic Periods in a Subtropical City. PLoS ONE, 2015, 10, e0125447.	2.5	31
140	Age-specific epidemic waves of influenza and respiratory syncytial virus in a subtropical city. Scientific Reports, 2015, 5, 10390.	3.3	21
141	Global Spatio-temporal Patterns of Influenza in the Post-pandemic Era. Scientific Reports, 2015, 5, 11013.	3.3	55
142	Patterns of spread of influenza A in Canada. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131174.	2.6	32
143	Inferring the causes of the three waves of the 1918 influenza pandemic in England and Wales. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131345.	2.6	109
144	Effects of School Closure on Incidence of Pandemic Influenza in Alberta, Canada. Annals of Internal Medicine, 2012, 156, 173.	3.9	166

#	Article	IF	Citations
145	Mechanistic modelling of the three waves of the 1918 influenza pandemic. Theoretical Ecology, 2011, 4, 283-288.	1.0	41
146	Plug-and-play inference for disease dynamics: measles in large and small populations as a case study. Journal of the Royal Society Interface, 2010, 7, 271-283.	3.4	222
147	NOISE-INDUCED SYNCHRONIZATION IN MULTITROPHIC CHAOTIC ECOLOGICAL SYSTEMS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 1779-1788.	1.7	3
148	Bright Soliton Solutions in Degenerate Femi Gas near Feshbach Resonance. Chinese Physics Letters, 2009, 26, 120308.	3.3	11
149	Time series analysis via mechanistic models. Annals of Applied Statistics, 2009, 3, .	1.1	144
150	Using CONTENT 1.5 to analyze an SIR model for childhood infectious diseases. Communications in Nonlinear Science and Numerical Simulation, 2008, 13, 1743-1747.	3.3	4
151	Epidemiological effects of seasonal oscillations in birth rates. Theoretical Population Biology, 2007, 72, 274-291.	1.1	46
152	Chaotic oscillations and cycles in multi-trophic ecological systems. Journal of Theoretical Biology, 2007, 248, 382-390.	1.7	38
153	GENERALIZED SYNCHRONIZATION IN DOUBLY DRIVEN CHAOTIC SYSTEM. International Journal of Modern Physics B, 2006, 20, 3477-3485.	2.0	0
154	Generalized synchronization induced by noise and parameter mismatching in Hindmarsh–Rose neurons. Chaos, Solitons and Fractals, 2005, 23, 1605-1611.	5.1	18
155	Generalized synchronization induced by noise and parameter mismatching in Hindmarsh–Rose neurons. Chaos, Solitons and Fractals, 2005, 23, 1605-1611.	5.1	12
156	Synchronization in Two Uncoupled Chaotic Neurons. Lecture Notes in Computer Science, 2004, , 138-143.	1.3	1
157	Spurious synchronization in non-diagonally coupled identical Lorenz oscillators. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 326, 349-354.	2.1	4
158	Unusual synchronization of Red Sea fish energy expenditures. Ecology Letters, 2003, 6, 83-86.	6.4	7
159	Spatio-temporal synchronization of recurrent epidemics. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1519-1526.	2.6	55
160	Detecting generalized synchrony: An improved approach. Physical Review E, 2003, 67, 026223.	2.1	14
161	Unexpected correspondence between noise-induced and master-slave complete synchronizations. Physical Review E, 2003, 68, 037202.	2.1	4
162	Noise-induced synchronization in realistic models. Physical Review E, 2003, 67, 027201.	2.1	70

#	Article	IF	CITATIONS
163	Transition to Phase Synchronization Through Generalized Synchronization. Chinese Physics Letters, 2003, 20, 999-1002.	3.3	6
164	Pattern formation of spiral waves in an inhomogeneous medium with small-world connections. Physical Review E, 2002, 65, 055204.	2.1	84
165	Analysis of generalized synchronization in directionally coupled chaotic phase-coherent oscillators by local minimal fluctuations. Physical Review E, 2002, 66, 036208.	2.1	8
166	Phase-Locking in Coupled Chaotic Oscillators. Chinese Physics Letters, 2002, 19, 174-176.	3.3	5
167	Periodic states with functional phase relation in weakly coupled chaotic Hindmarsh–Rose neurons. Physica D: Nonlinear Phenomena, 2001, 156, 314-324.	2.8	19
168	Phase locking in on-off intermittency. Physical Review E, 2001, 64, 066203.	2.1	10
169	Generalized Splay State in Coupled Chaotic Oscillators Induced by Weak Mutual Resonant Interactions. Physical Review Letters, 2001, 86, 1510-1513.	7.8	22
170	Chaoslike behavior in nonchaotic systems at finite computation precision. Physical Review E, 2001, 63, 046310.	2.1	7
171	A simple method for the computation of the conditional Lyapunov exponents. Communications in Nonlinear Science and Numerical Simulation, 1999, 4, 113-117.	3.3	5
172	Epidemic Growth and Reproduction Number for the Novel Coronavirus Disease (COVID-19) Outbreak on the Diamond Princess Cruise Ship from January 20 to February 19, 2020: A preliminary Data-Driven Analysis. SSRN Electronic Journal, 0, , .	0.4	15
173	The Attack Rate of the COVID-19 in a Year. SSRN Electronic Journal, 0, , .	0.4	2
174	Individual Variation in Infectiousness of Coronavirus 2019 Implies Difficulty in Control. SSRN Electronic Journal, 0, , .	0.4	0
175	Reduction in the Infection Fatality Rate of Omicron (B.1.1.529) Variant Compared to Previous Variants in South Africa. SSRN Electronic Journal, $0, , .$	0.4	5