
## John S Thornton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8735984/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | 137†Outcome measures in CMT: case examples from the muscle MRI in CMT study. Journal of Neurology,<br>Neurosurgery and Psychiatry, 2022, 93, A144.1-A144.                                                                                                                                                            | 1.9  | 0         |
| 2  | Longitudinal Changes in MRI Muscle Morphometry and Composition in People With Inclusion Body<br>Myositis. Neurology, 2022, 99, .                                                                                                                                                                                     | 1.1  | 7         |
| 3  | Clinical evaluation of automated quantitative MRI reports for assessment of hippocampal sclerosis.<br>European Radiology, 2021, 31, 34-44.                                                                                                                                                                           | 4.5  | 11        |
| 4  | Musclesense: a Trained, Artificial Neural Network for the Anatomical Segmentation of Lower Limb<br>Magnetic Resonance Images in Neuromuscular Diseases. Neuroinformatics, 2021, 19, 379-383.                                                                                                                         | 2.8  | 2         |
| 5  | FLAIR-only joint volumetric analysis of brain lesions and atrophy in clinically isolated syndrome (CIS) suggestive of multiple sclerosis. NeuroImage: Clinical, 2021, 29, 102542.                                                                                                                                    | 2.7  | 6         |
| 6  | Automated quantitative MRI volumetry reports support diagnostic interpretation in dementia: a multi-rater, clinical accuracy study. European Radiology, 2021, 31, 5312-5323.                                                                                                                                         | 4.5  | 19        |
| 7  | Development of imaging-based risk scores for prediction of intracranial haemorrhage and ischaemic stroke in patients taking antithrombotic therapy after ischaemic stroke or transient ischaemic attack: a pooled analysis of individual patient data from cohort studies. Lancet Neurology, The, 2021, 20, 294-303. | 10.2 | 37        |
| 8  | Clinical quantitative MRI and the need for metrology. British Journal of Radiology, 2021, 94, 20201215.                                                                                                                                                                                                              | 2.2  | 18        |
| 9  | Putaminal diffusion tensor imaging measures predict disease severity across human prion diseases.<br>Brain Communications, 2020, 2, fcaa032.                                                                                                                                                                         | 3.3  | 1         |
| 10 | MRI quantifies lumbosacral nerve root and sciatic nerve hypertrophy in chronic inflammatory<br>demyelinating polyradiculoneuropathy. European Journal of Radiology, 2020, 130, 109164.                                                                                                                               | 2.6  | 6         |
| 11 | Temperature Measurements in the Vicinity of Human Intracranial EEG Electrodes Exposed to Body-Coil<br>RF for MRI at 1.5T. Frontiers in Neuroscience, 2020, 14, 429.                                                                                                                                                  | 2.8  | 5         |
| 12 | Bilateral nucleus basalis of Meynert deep brain stimulation for dementia with Lewy bodies: A<br>randomised clinical trial. Brain Stimulation, 2020, 13, 1031-1039.                                                                                                                                                   | 1.6  | 39        |
| 13 | Skeletal muscle MRI differentiates SBMA and ALS and correlates with disease severity. Neurology, 2019, 93, e895-e907.                                                                                                                                                                                                | 1.1  | 51        |
| 14 | Somatotopic organization of corticospinal/corticobulbar motor tracts in controls and patients with tumours: A combined fMRI–DTI study. NeuroImage: Clinical, 2019, 23, 101910.                                                                                                                                       | 2.7  | 12        |
| 15 | The quantitative neuroradiology initiative framework: application to dementia. British Journal of<br>Radiology, 2019, 92, 20190365.                                                                                                                                                                                  | 2.2  | 32        |
| 16 | Acquisition of sensorimotor fMRI under general anaesthesia: Assessment of feasibility, the BOLD response and clinical utility. NeuroImage: Clinical, 2019, 23, 101923.                                                                                                                                               | 2.7  | 8         |
| 17 | Prion disease diagnosis using subject-specific imaging biomarkers within a multi-kernel Gaussian<br>process. NeuroImage: Clinical, 2019, 24, 102051.                                                                                                                                                                 | 2.7  | 7         |
| 18 | Cerebrospinal fluid flow dynamics in Huntington's disease evaluated by phase contrast<br><scp>MRI</scp> . European Journal of Neuroscience, 2019, 49, 1632-1639.                                                                                                                                                     | 2.6  | 5         |

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Deep brain stimulation has state-dependent effects on motor connectivity in Parkinson's disease.<br>Brain, 2019, 142, 2417-2431.                                                                                    | 7.6  | 33        |
| 20 | Natural history of limb girdle muscular dystrophy R9 over 6Âyears: searching for trial endpoints.<br>Annals of Clinical and Translational Neurology, 2019, 6, 1033-1045.                                            | 3.7  | 28        |
| 21 | Cerebral microbleeds and stroke risk after ischaemic stroke or transient ischaemic attack: a pooled analysis of individual patient data from cohort studies. Lancet Neurology, The, 2019, 18, 653-665.              | 10.2 | 143       |
| 22 | Development of MRC Centre MRI calf muscle fat fraction protocol as a sensitive outcome measure in<br>Hereditary Sensory Neuropathy Type 1. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90,<br>895-906. | 1.9  | 17        |
| 23 | Bilateral Deep Brain Stimulation of the Nucleus Basalis of Meynert for Parkinson Disease Dementia.<br>JAMA Neurology, 2018, 75, 169.                                                                                | 9.0  | 112       |
| 24 | Semi-Automated Analysis of Diaphragmatic Motion with Dynamic Magnetic Resonance Imaging in<br>Healthy Controls and Non-Ambulant Subjects with Duchenne Muscular Dystrophy. Frontiers in<br>Neurology, 2018, 9, 9.   | 2.4  | 24        |
| 25 | Validation of MRC Centre MRI calf muscle fat fraction protocol as an outcome measure in CMT1A.<br>Neurology, 2018, 91, e1125-e1129.                                                                                 | 1.1  | 43        |
| 26 | CIRSE Position Statement: Interventional Radiologists and Intra-arterial Stroke Therapy.<br>CardioVascular and Interventional Radiology, 2018, 41, 1460-1462.                                                       | 2.0  | 4         |
| 27 | Expanding the role of stent-retriever endovascular thrombectomy: a case series of free-floating thrombus. Journal of NeuroInterventional Surgery, 2018, 10, 1164-1167.                                              | 3.3  | 20        |
| 28 | E07â€Cerebrospinal fluid flow dynamics in huntington's disease using phase contrast MRI: a pilot<br>cross-sectional study. , 2018, , .                                                                              |      | 0         |
| 29 | Technical challenges and safety of magnetic resonance imaging with in situ neuromodulation from spine to brain. European Journal of Paediatric Neurology, 2017, 21, 232-241.                                        | 1.6  | 21        |
| 30 | 9.4 T MR microscopy of the substantia nigra with pathological validation in controls and disease.<br>NeuroImage: Clinical, 2017, 13, 154-163.                                                                       | 2.7  | 49        |
| 31 | ApoE influences regional white-matter axonal density loss in Alzheimer's disease. Neurobiology of Aging, 2017, 57, 8-17.                                                                                            | 3.1  | 82        |
| 32 | Neuroanatomical correlates of prion disease progression - a 3T longitudinal voxel-based morphometry study. NeuroImage: Clinical, 2017, 13, 89-96.                                                                   | 2.7  | 8         |
| 33 | Uncovering the underlying mechanisms and whole-brain dynamics of deep brain stimulation for<br>Parkinson's disease. Scientific Reports, 2017, 7, 9882.                                                              | 3.3  | 79        |
| 34 | [P4–230]: LONGITUDINAL NEURITE ORIENTATION DISPERSION AND DENSITY IMAGING IN YOUNGâ€ONSET ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P1359.                                                           | 0.8  | 0         |
| 35 | [ICâ€Pâ€168]: LONGITUDINAL NEURITE ORIENTATION DISPERSION AND DENSITY IMAGING IN YOUNGâ€ONSET ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P127.                                                        | 0.8  | 0         |
| 36 | PO202â€Natural history study in hereditary sensory neuropathy type 1. Journal of Neurology,<br>Neurosurgery and Psychiatry, 2017, 88, A65.1-A65.                                                                    | 1.9  | 0         |

| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Feasibility of Diffusion Tractography for the Reconstruction of Intra-Thalamic and<br>Cerebello-Thalamic Targets for Functional Neurosurgery: A Multi-Vendor Pilot Study in Four<br>Subjects. Frontiers in Neuroanatomy, 2016, 10, 76. | 1.7  | 25        |
| 38 | Stability and sensitivity of water <i>T</i> <sub>2</sub> obtained with IDEAL PMG in healthy and fatâ€infiltrated skeletal muscle. NMR in Biomedicine, 2016, 29, 1800-1812.                                                             | 2.8  | 10        |
| 39 | Muscle magnetic resonance imaging in congenital myasthenic syndromes. Muscle and Nerve, 2016, 54, 211-219.                                                                                                                             | 2.2  | 24        |
| 40 | Intra-Arterial Therapy and Post-Treatment Infarct Volumes. Stroke, 2016, 47, 777-781.                                                                                                                                                  | 2.0  | 53        |
| 41 | MRI biomarker assessment of neuromuscular disease progression: a prospective observational cohort study. Lancet Neurology, The, 2016, 15, 65-77.                                                                                       | 10.2 | 256       |
| 42 | Extra-ocular muscle MRI in genetically-defined mitochondrial disease. European Radiology, 2016, 26, 130-137.                                                                                                                           | 4.5  | 24        |
| 43 | Upper Limb Evaluation in Duchenne Muscular Dystrophy: Fat-Water Quantification by MRI, Muscle Force and Function Define Endpoints for Clinical Trials. PLoS ONE, 2016, 11, e0162542.                                                   | 2.5  | 55        |
| 44 | Bilateral Weighted Adaptive Local Similarity Measure for Registration in Neurosurgery. Lecture Notes in Computer Science, 2016, , 81-88.                                                                                               | 1.3  | 0         |
| 45 | Objective Bayesian fMRI analysisââ,¬â€a pilot study in different clinical environments. Frontiers in<br>Neuroscience, 2015, 9, 168.                                                                                                    | 2.8  | 8         |
| 46 | Design, Operation, and Safety of Singleâ€Room Interventional MRI Suites: Practical Experience From Two<br>Centers. Journal of Magnetic Resonance Imaging, 2015, 41, 34-43.                                                             | 3.4  | 26        |
| 47 | Simulated field maps for susceptibility artefact correction in interventional MRI. International Journal of Computer Assisted Radiology and Surgery, 2015, 10, 1405-1416.                                                              | 2.8  | 4         |
| 48 | The Safety of Using Body-Transmit MRI in Patients with Implanted Deep Brain Stimulation Devices. PLoS ONE, 2015, 10, e0129077.                                                                                                         | 2.5  | 46        |
| 49 | MRI QUANTIFICATION OF FAT GRADIENTS IN CALF MUSCLES IN CMT1A. Journal of Neurology,<br>Neurosurgery and Psychiatry, 2014, 85, e4.83-e4.                                                                                                | 1.9  | 0         |
| 50 | Improved anatomical reproducibility in quantitative lowerâ€limb muscle MRI. Journal of Magnetic<br>Resonance Imaging, 2014, 39, 1033-1038.                                                                                             | 3.4  | 24        |
| 51 | Auditory tracts identified with combined fMRI and diffusion tractography. NeuroImage, 2014, 84, 562-574.                                                                                                                               | 4.2  | 62        |
| 52 | Resting state functional MRI in Parkinson's disease: the impact of deep brain stimulation on â€~effective'<br>connectivity. Brain, 2014, 137, 1130-1144.                                                                               | 7.6  | 196       |
| 53 | Susceptibility artefact correction using dynamic graph cuts: Application to neurosurgery. Medical<br>Image Analysis, 2014, 18, 1132-1142.                                                                                              | 11.6 | 19        |
| 54 | Preventing visual field deficits from neurosurgery. Neurology, 2014, 83, 604-611.                                                                                                                                                      | 1.1  | 67        |

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Reproducibility, and age, body-weight and gender dependency of candidate skeletal muscle MRI<br>outcome measures in healthy volunteers. European Radiology, 2014, 24, 1610-1620.                          | 4.5 | 53        |
| 56 | Simulated Field Maps: Toward Improved Susceptibility Artefact Correction in Interventional MRI.<br>Lecture Notes in Computer Science, 2014, , 226-235.                                                    | 1.3 | 1         |
| 57 | Quantitative Magnetic Resonance Imaging in Limb-Girdle Muscular Dystrophy 21: A Multinational<br>Cross-Sectional Study. PLoS ONE, 2014, 9, e90377.                                                        | 2.5 | 81        |
| 58 | Muscle MRI reveals distinct abnormalities in genetically proven non-dystrophic myotonias.<br>Neuromuscular Disorders, 2013, 23, 637-646.                                                                  | 0.6 | 56        |
| 59 | Cerebral venous system and anatomical predisposition to highâ€altitude headache. Annals of<br>Neurology, 2013, 73, 381-389.                                                                               | 5.3 | 76        |
| 60 | Multiparameter MR Imaging in the <i>6-OPRI</i> Variant of Inherited Prion Disease. American Journal of Neuroradiology, 2013, 34, 1723-1730.                                                               | 2.4 | 8         |
| 61 | Magnetic resonance imaging evidence for presymptomatic change in thalamus and caudate in familial<br>Alzheimer's disease. Brain, 2013, 136, 1399-1414.                                                    | 7.6 | 174       |
| 62 | Susceptibility artefact correction by combining B0 field maps and non-rigid registration using graph cuts. , 2013, , .                                                                                    |     | 2         |
| 63 | Quantitative Muscle MRI as an Assessment Tool for Monitoring Disease Progression in LGMD2I: A<br>Multicentre Longitudinal Study. PLoS ONE, 2013, 8, e70993.                                               | 2.5 | 148       |
| 64 | Skeletal muscle MRI magnetisation transfer ratio reflects clinical severity in peripheral neuropathies.<br>Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 29-32.                            | 1.9 | 40        |
| 65 | High resolution MR anatomy of the subthalamic nucleus: Imaging at 9.4T with histological validation.<br>NeuroImage, 2012, 59, 2035-2044.                                                                  | 4.2 | 81        |
| 66 | Simultaneous intracranial EEG–fMRI in humans: Protocol considerations and data quality.<br>NeuroImage, 2012, 63, 301-309.                                                                                 | 4.2 | 62        |
| 67 | Accurate Localization of Optic Radiation During Neurosurgery in an Interventional MRI Suite. IEEE<br>Transactions on Medical Imaging, 2012, 31, 882-891.                                                  | 8.9 | 40        |
| 68 | Correcting radiofrequency inhomogeneity effects in skeletal muscle magnetisation transfer maps.<br>NMR in Biomedicine, 2012, 25, 262-270.                                                                 | 2.8 | 13        |
| 69 | Therapeutic Subthalamic Nucleus Deep Brain Stimulation Reverses Cortico-Thalamic Coupling during<br>Voluntary Movements in Parkinson's Disease. PLoS ONE, 2012, 7, e50270.                                | 2.5 | 66        |
| 70 | Cerebral Artery Dilatation Maintains Cerebral Oxygenation at Extreme Altitude and in Acute<br>Hypoxia—An Ultrasound and MRI Study. Journal of Cerebral Blood Flow and Metabolism, 2011, 31,<br>2019-2029. | 4.3 | 187       |
| 71 | MRI shows increased sciatic nerve cross sectional area in inherited and inflammatory neuropathies.<br>Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 1283-1286.                             | 1.9 | 49        |
| 72 | Clinical Safety of Brain Magnetic Resonance Imaging with Implanted Deep Brain Stimulation Hardware:<br>Large Case Series and Review of the Literature. World Neurosurgery, 2011, 76, 164-172.             | 1.3 | 97        |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Targeting of the pedunculopontine nucleus by an MRI-guided approach: a cadaver study. Journal of<br>Neural Transmission, 2011, 118, 1487-1495.                                                                        | 2.8 | 28        |
| 74 | Functional magnetic resonance imaging exploration of combined hand and speech movements in Parkinson's disease. Movement Disorders, 2011, 26, 2212-2219.                                                              | 3.9 | 35        |
| 75 | Simultaneous <i>T</i> <sub>2</sub> and lipid quantitation using IDEALâ€CPMG. Magnetic Resonance in<br>Medicine, 2011, 66, 1293-1302.                                                                                  | 3.0 | 45        |
| 76 | Improved Neuronavigation through Integration of Intraoperative Anatomical and Diffusion Images in an Interventional MRI Suite. Lecture Notes in Computer Science, 2011, , 168-178.                                    | 1.3 | 4         |
| 77 | Quantitative magnetization transfer in in vivo healthy human skeletal muscle at 3 T. Magnetic<br>Resonance in Medicine, 2010, 64, 1739-1748.                                                                          | 3.0 | 57        |
| 78 | Magnetization transfer ratio may be a surrogate of spongiform change in human prion diseases. Brain,<br>2010, 133, 3058-3068.                                                                                         | 7.6 | 10        |
| 79 | Brain-water diffusion coefficients reflect the severity of inherited prion disease. Neurology, 2010, 74, 658-665.                                                                                                     | 1.1 | 7         |
| 80 | High-b-Value Diffusion MR Imaging and Basal Nuclei Apparent Diffusion Coefficient Measurements in<br>Variant and Sporadic Creutzfeldt-Jakob Disease. American Journal of Neuroradiology, 2010, 31, 521-526.           | 2.4 | 46        |
| 81 | Choice of echo time on GRE T2*-weighted MRI influences the classification of brain microbleeds.<br>Clinical Radiology, 2010, 65, 391-394.                                                                             | 1.1 | 27        |
| 82 | Feasibility of simultaneous intracranial EEG-fMRI in humans: A safety study. NeuroImage, 2010, 49,<br>379-390.                                                                                                        | 4.2 | 85        |
| 83 | A functional form for injected MRI Gd-chelate contrast agent concentration incorporating recirculation, extravasation and excretion. Physics in Medicine and Biology, 2009, 54, 2933-2949.                            | 3.0 | 18        |
| 84 | Short-term adaptation to a simple motor task: A physiological process preserved in multiple sclerosis.<br>NeuroImage, 2009, 45, 500-511.                                                                              | 4.2 | 38        |
| 85 | Impairment of movement-associated brain deactivation in multiple sclerosis: further evidence for a<br>functional pathology of interhemispheric neuronal inhibition. Experimental Brain Research, 2008, 187,<br>25-31. | 1.5 | 52        |
| 86 | Safety of localizing epilepsy monitoring intracranial electroencephalograph electrodes using MRI:<br>Radiofrequencyâ€induced heating. Journal of Magnetic Resonance Imaging, 2008, 28, 1233-1244.                     | 3.4 | 74        |
| 87 | Imaging cadavers: Cold FLAIR and noninvasive brain thermometry using CSF diffusion. Magnetic Resonance in Medicine, 2008, 59, 190-195.                                                                                | 3.0 | 46        |
| 88 | Relating functional changes during hand movement to clinical parameters in patients with multiple<br>sclerosis in a multiâ€centre fMRI study. European Journal of Neurology, 2008, 15, 113-122.                       | 3.3 | 75        |
| 89 | Reproducibility of fMRI in the clinical setting: Implications for trial designs. NeuroImage, 2008, 42, 603-610.                                                                                                       | 4.2 | 49        |
| 90 | Inclusion or Exclusion of Intratumoral Vessels in Relative Cerebral Blood Volume Characterization<br>in Low-Grade Gliomas: Does It Make a Difference?. American Journal of Neuroradiology, 2008, 29,<br>1140-1141.    | 2.4 | 23        |

| #   | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Functional MRI with active, fully implanted, deep brain stimulation systems: Safety and experimental confounds. NeuroImage, 2007, 37, 508-517.                                                                                        | 4.2 | 103       |
| 92  | REGISTRATION OF RCBV AND ADC MAPS WITH STRUCTURAL AND PHYSIOLOGICAL MR IMAGES IN GLIOMA PATIENTS: STUDY AND VALIDATION. , 2007, , .                                                                                                   |     | 0         |
| 93  | Diffusionâ€weighted magnetic resonance imaging differentiates Parkinsonian variant of multipleâ€system<br>atrophy from progressive supranuclear palsy. Movement Disorders, 2007, 22, 68-74.                                           | 3.9 | 132       |
| 94  | "Therapeutic time window―duration decreases with increasing severity of cerebral<br>hypoxia–ischaemia under normothermia and delayed hypothermia in newborn piglets. Brain Research,<br>2007, 1154, 173-180.                          | 2.2 | 100       |
| 95  | The Chronic Vascular and Haemodynamic Response after Permanent Bilateral Common Carotid<br>Occlusion in Newborn and Adult Rats. Journal of Cerebral Blood Flow and Metabolism, 2006, 26,<br>1066-1075.                                | 4.3 | 108       |
| 96  | 1H-MRS internal thermometry in test-objects (phantoms) to within 0.1 K for quality assurance in long-term quantitative MR studies. NMR in Biomedicine, 2006, 19, 560-565.                                                             | 2.8 | 8         |
| 97  | Superficial brain is cooler in small piglets: Neonatal hypothermia implications. Annals of Neurology, 2006, 60, 578-585.                                                                                                              | 5.3 | 22        |
| 98  | Comparative Prognostic Utilities of Early Quantitative Magnetic Resonance Imaging Spin-Spin<br>Relaxometry and Proton Magnetic Resonance Spectroscopy in Neonatal Encephalopathy. Pediatrics,<br>2006, 118, 1467-1477.                | 2.1 | 45        |
| 99  | Delayed Whole-Body Cooling to 33 or 35ÂC and the Development of Impaired Energy Generation<br>Consequential to Transient Cerebral Hypoxia-Ischemia in the Newborn Piglet. Pediatrics, 2006, 117,<br>1549-1559.                        | 2.1 | 59        |
| 100 | Growth restriction and the cerebral metabolic response to acute hypoxia of chick embryos in-ovo: A proton magnetic resonance spectroscopy study. Developmental Brain Research, 2005, 160, 203-210.                                    | 1.7 | 7         |
| 101 | Depth of delayed cooling alters neuroprotection pattern after hypoxia-ischemia. Annals of Neurology, 2005, 58, 75-87.                                                                                                                 | 5.3 | 62        |
| 102 | MRI of Animal Models of Brain Disease. Methods in Enzymology, 2004, 386, 149-177.                                                                                                                                                     | 1.0 | 11        |
| 103 | High field MRI correlates of myelin content and axonal density in multiple sclerosis. Journal of Neurology, 2003, 250, 1293-1301.                                                                                                     | 3.6 | 266       |
| 104 | Magnetic resonance proton spectroscopy and diffusion weighted imaging of chick embryo brain in ovo. Developmental Brain Research, 2003, 141, 101-107.                                                                                 | 1.7 | 18        |
| 105 | Delayed hypothermia prevents decreases in N-acetylaspartate and reduced glutathione in the cerebral cortex of the neonatal pig following transient hypoxia-ischaemia. Neurochemical Research, 2002, 27, 1599-1604.                    | 3.3 | 15        |
| 106 | Cerebral tissue water spin-spin relaxation times in human neonates at 2.4 Tesla: Methodology and the effects of maturation. Magnetic Resonance Imaging, 1999, 17, 1289-1295.                                                          | 1.8 | 25        |
| 107 | Temporal and anatomical variations of brain water apparent diffusion coefficient in perinatal<br>cerebral hypoxic-ischemic injury: Relationships to cerebral energy metabolism. Magnetic Resonance in<br>Medicine, 1998, 39, 920-927. | 3.0 | 73        |
| 108 | Anisotropic water diffusion in white and gray matter of the neonatal piglet brain before and after transient hypoxia-ischaemia. Magnetic Resonance Imaging, 1997, 15, 433-440.                                                        | 1.8 | 77        |