Abdelhafid Bendahmane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8735037/publications.pdf

Version: 2024-02-01

93 papers 10,260 citations

44069 48 h-index 94 g-index

127 all docs

127 docs citations

times ranked

127

9752 citing authors

#	Article	IF	CITATIONS
1	The Rx Gene from Potato Controls Separate Virus Resistance and Cell Death Responses. Plant Cell, 1999, 11, 781-791.	6.6	650
2	A transposon-induced epigenetic change leads to sex determination in melon. Nature, 2009, 461, 1135-1138.	27.8	555
3	The heatâ€shock protein/chaperone network and multiple stress resistance. Plant Biotechnology Journal, 2017, 15, 405-414.	8.3	513
4	High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO Journal, 2003, 22, 5690-5699.	7.8	493
5	A reference genome for pea provides insight into legume genome evolution. Nature Genetics, 2019, 51, 1411-1422.	21.4	363
6	The Pea TCP Transcription Factor PsBRC1 Acts Downstream of Strigolactones to Control Shoot Branching Â. Plant Physiology, 2012, 158, 225-238.	4.8	348
7	The Rosa genome provides new insights into the domestication of modern roses. Nature Genetics, 2018, 50, 772-777.	21.4	344
8	A Conserved Mutation in an Ethylene Biosynthesis Enzyme Leads to Andromonoecy in Melons. Science, 2008, 321, 836-838.	12.6	330
9	A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (elF4E). Plant Journal, 2002, 32, 1067-1075.	5.7	310
10	Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at theRxlocus of potato. Plant Journal, 2002, 32, 195-204.	5.7	309
11	Identification of the fertility restoration locus, Rfo , in radish, as a member of the pentatricopeptideâ€repeat protein family. EMBO Reports, 2003, 4, 588-594.	4.5	291
12	Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato. Plant Journal, 2000, 21, 73-81.	5.7	288
13	A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science, 2015, 350, 688-691.	12.6	218
14	An Induced Mutation in Tomato eIF4E Leads to Immunity to Two Potyviruses. PLoS ONE, 2010, 5, e11313.	2.5	208
15	AneIF4Eallele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant Journal, 2006, 48, 452-462.	5.7	203
16	A new mutant genetic resource for tomato crop improvement by TILLING technology. BMC Research Notes, 2010, 3, 69.	1.4	200
17	Whole-genome landscape of Medicago truncatula symbiotic genes. Nature Plants, 2018, 4, 1017-1025.	9.3	192
18	Role of tomato <i>BRANCHED1</i> â€like genes in the control of shoot branching. Plant Journal, 2011, 67, 701-714.	5 . 7	179

#	Article	IF	CITATIONS
19	The coat protein of potato virus X is a strainâ€specific elicitor of <i>Rx</i> 1â€mediated virus resistance in potato. Plant Journal, 1995, 8, 933-941.	5.7	172
20	A conserved molecular basis for photoperiod adaptation in two temperate legumes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21158-21163.	7.1	159
21	Advances in understanding recessive resistance to plant viruses. Molecular Plant Pathology, 2004, 5, 223-233.	4.2	157
22	UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biology, 2008, 9, R43.	9.6	157
23	A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nature Genetics, 2019, 51, 1607-1615.	21.4	153
24	Host plant resistance to aphids in cultivated crops: Genetic and molecular bases, and interactions with aphid populations. Comptes Rendus - Biologies, 2010, 333, 566-573.	0.2	146
25	Characterization of <i>Arabidopsis thaliana</i> mismatch specific endonucleases: application to mutation discovery by TILLING in pea. Plant Journal, 2007, 51, 1116-1125.	5.7	143
26	Identification of Mendel's White Flower Character. PLoS ONE, 2010, 5, e13230.	2.5	135
27	A Conserved Ethylene Biosynthesis Enzyme Leads to Andromonoecy in Two Cucumis Species. PLoS ONE, 2009, 4, e6144.	2.5	134
28	<i>Tendril-less</i> Regulates Tendril Formation in Pea Leaves Â. Plant Cell, 2009, 21, 420-428.	6.6	129
29	Synchronization of the flowering transition by the tomato TERMINATING FLOWER gene. Nature Genetics, 2012, 44, 1393-1398.	21.4	122
30	Engineering Melon Plants with Improved Fruit Shelf Life Using the TILLING Approach. PLoS ONE, 2010, 5, e15776.	2.5	110
31	ABI5 Is a Regulator of Seed Maturation and Longevity in Legumes. Plant Cell, 2016, 28, 2735-2754.	6.6	110
32	Modify the Histone to Win the Battle: Chromatin Dynamics in Plant–Pathogen Interactions. Frontiers in Plant Science, 2018, 9, 355.	3.6	106
33	The battle for survival between viruses and their host plants. Current Opinion in Virology, 2016, 17, 32-38.	5.4	102
34	Isoprenoid biosynthesis is required for miRNA function and affects membrane association of ARGONAUTE 1 in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1778-1783.	7.1	101
35	Wheat chromatin architecture is organized in genome territories and transcription factories. Genome Biology, 2020, 21, 104.	8.8	99
36	Shoot Branching and Leaf Dissection in Tomato Are Regulated by Homologous Gene Modules. Plant Cell, 2011, 23, 3595-3609.	6.6	93

#	Article	IF	Citations
37	The <i><scp>V</scp>at</i> locus encodes for a <scp>CC</scp> â€ <scp>NBS</scp> â€ <scp>LRR</scp> protein that confers resistance to <i><scp>A</scp>phis gossypii</i> infestation and <i><scp>A</scp>A.Âgossypii</i> a€mediated virus resistance. Plant Journal, 2014, 80, 993-1004.	5.7	90
38	Genetic Control of Glandular Trichome Development. Trends in Plant Science, 2020, 25, 477-487.	8.8	83
39	Tight Physical Linkage of the Nematode Resistance Gene Gpa2 and the Virus Resistance Gene Rx on a Single Segment Introgressed from the Wild Species Solanum tuberosum subsp. andigena CPC 1673 into Cultivated Potato. Molecular Plant-Microbe Interactions, 1999, 12, 197-206.	2.6	82
40	Dual Resistance of Melon to Fusarium oxysporum Races 0 and 2 and to Papaya ring-spot virus is Controlled by a Pair of Head-to-Head-Oriented NB-LRR Genes of Unusual Architecture. Molecular Plant, 2013, 6, 235-238.	8.3	82
41	A <i>Brachypodium</i> UDP-Glycosyltransferase Confers Root Tolerance to Deoxynivalenol and Resistance to <i>Fusarium</i> Infection. Plant Physiology, 2016, 172, 559-574.	4.8	81
42	An improved assembly and annotation of the melon (Cucumis melo L.) reference genome. Scientific Reports, 2018, 8, 8088.	3.3	81
43	<i><i><scp>ETHQV</scp>6.3</i> is involved in melon climacteric fruit ripening and is encoded by a <scp>NAC</scp> domain transcription factor. Plant Journal, 2017, 91, 671-683.</i>	5.7	71
44	Natural and induced loss of function mutations in SIMBP21 MADS-box gene led to jointless-2 phenotype in tomato. Scientific Reports, 2017, 7, 4402.	3.3	70
45	Non-synonymous single nucleotide polymorphisms in the watermelon eIF4E gene are closely associated with resistance to Zucchini yellow mosaic virus. Theoretical and Applied Genetics, 2009, 120, 191-200.	3.6	66
46	SMART – Sunflower Mutant population And Reverse genetic Tool for crop improvement. BMC Plant Biology, 2013, 13, 38.	3.6	62
47	Towards a TILLING platform for functional genomics in Piel de Sapo melons. BMC Research Notes, 2011, 4, 289.	1.4	59
48	The Polycomb protein <scp>LHP</scp> 1 regulates <i>Arabidopsis thaliana</i> stress responses through the repression of the <scp>MYC</scp> 2â€dependent branch of immunity. Plant Journal, 2019, 100, 1118-1131.	5.7	52
49	Induced mutations in tomato SIExp1 alter cell wall metabolism and delay fruit softening. Plant Science, 2016, 242, 195-202.	3.6	51
50	Molecular and functional characterization of CpACS27A gene reveals its involvement in monoecy instability and other associated traits in squash (Cucurbita pepo L.). Planta, 2014, 239, 1201-1215.	3.2	45
51	The pea branching RMS2 gene encodes the PsAFB4/5 auxin receptor and is involved in an auxin-strigolactone regulation loop. PLoS Genetics, 2017, 13, e1007089.	3.5	45
52	PT-Flax (phenotyping and TILLinG of flax): development of a flax (Linum usitatissimumL.) mutant population and TILLinG platform for forward and reverse genetics. BMC Plant Biology, 2013, 13, 159.	3.6	44
53	GCN5 modulates salicylic acid homeostasis by regulating H3K14ac levels at the 5′ and 3′ ends of its target genes. Nucleic Acids Research, 2020, 48, 5953-5966.	14.5	44
54	Development of a Cucumis sativus TILLinG Platform for Forward and Reverse Genetics. PLoS ONE, 2014, 9, e97963.	2.5	43

#	Article	IF	Citations
55	The Andromonoecious Sex Determination Gene Predates the Separation of Cucumis and Citrullus Genera. PLoS ONE, 2016, 11, e0155444.	2.5	43
56	Genomics of sex determination. Current Opinion in Plant Biology, 2014, 18, 110-116.	7.1	41
57	Soybean cyst nematode resistance in soybean is independent of the Rhg4 locus LRR-RLK gene. Functional and Integrative Genomics, 2011, 11, 539-549.	3.5	40
58	Pivotal Roles of Cryptochromes 1a and 2 in Tomato Development and Physiology. Plant Physiology, 2019, 179, 732-748.	4.8	40
59	First TILLING Platform in Cucurbita pepo: A New Mutant Resource for Gene Function and Crop Improvement. PLoS ONE, 2014, 9, e112743.	2.5	40
60	The miR166–SlHB15A regulatory module controls ovule development and parthenocarpic fruit set under adverse temperatures in tomato. Molecular Plant, 2021, 14, 1185-1198.	8.3	39
61	Eliminating Anti-Nutritional Plant Food Proteins: The Case of Seed Protease Inhibitors in Pea. PLoS ONE, 2015, 10, e0134634.	2.5	37
62	Translational Research: Exploring and Creating Genetic Diversity. Trends in Plant Science, 2018, 23, 42-52.	8.8	36
63	The <i>Rx</i> Gene Confers Resistance to a Range of <i>Potexviruses</i> in Transgenic <i>Nicotiana</i> Plants. Molecular Plant-Microbe Interactions, 2008, 21, 1154-1164.	2.6	35
64	Characterization of a radish introgression carrying the Ogura fertility restorer gene Rfo in rapeseed, using the Arabidopsis genome sequence and radish genetic mapping. Theoretical and Applied Genetics, 2003, 107, 1442-1451.	3.6	30
65	Structural analysis of the eukaryotic initiation factor 4E gene controlling potyvirus resistance in pepper: exploitation of a BAC library. Gene, 2004, 338, 209-216.	2.2	30
66	A pathogenesisâ€related protein GmPR08â€Bet VI promotes a molecular interaction between the GmSHMT08 and GmSNAP18 in resistance to <i>Heterodera glycines</i> . Plant Biotechnology Journal, 2020, 18, 1810-1829.	8.3	29
67	A physical map covering the nsv locus that confers resistance to Melon necrotic spot virus in melon (Cucumis melo L.). Theoretical and Applied Genetics, 2005, 111, 914-922.	3.6	27
68	The quest for epigenetic regulation underlying unisexual flower development in Cucumis melo. Epigenetics and Chromatin, 2017, 10, 22.	3.9	27
69	Multiple Coat Protein Mutations Abolish Recognition of <i>Pepino mosaic potexvirus</i> (PepMV) by the Potato <i>Rx</i> Resistance Gene in Transgenic Tomatoes. Molecular Plant-Microbe Interactions, 2010, 23, 376-383.	2.6	26
70	Role of a receptor-like kinase K1 in pea Rhizobium symbiosis development. Planta, 2018, 248, 1101-1120.	3.2	25
71	Characterisation of alleles of tomato light signalling genes generated by TILLING. Phytochemistry, 2012, 79, 78-86.	2.9	23
72	Gibberellins negatively regulate the development of Medicago truncatula root system. Scientific Reports, 2019, 9, 2335.	3.3	23

#	Article	IF	Citations
73	lpiRld: Integrative approach for piRNA prediction using genomic and epigenomic data. PLoS ONE, 2017, 12, e0179787.	2.5	17
74	Integrative genome-wide analysis reveals the role of WIP proteins in inhibition of growth and development. Communications Biology, 2020, 3, 239.	4.4	16
75	The gynoecious CmWIP1 transcription factor interacts with CmbZIP48 to inhibit carpel development. Scientific Reports, 2019, 9, 15443.	3.3	14
76	Development of a Sequence-Based Reference Physical Map of Pea (Pisum sativum L.). Frontiers in Plant Science, 2019, 10, 323.	3.6	13
77	Structural Variations in LysM Domains of LysM-RLK PsK1 May Result in a Different Effect on Pea–Rhizobial Symbiosis Development. International Journal of Molecular Sciences, 2019, 20, 1624.	4.1	12
78	Cantaloupe melon genome reveals 3D chromatin features and structural relationship with the ancestral cucurbitaceae karyotype. IScience, 2022, 25, 103696.	4.1	12
79	Hybridizationâ€chainâ€reaction is a relevant method for in situ detection of M2dâ€like macrophages in a miniâ€pig model. FASEB Journal, 2020, 34, 15675-15686.	0.5	11
80	Roles of <i>BdUNICULME4</i> and <i>BdLAXATUMâ€A</i> in the nonâ€domesticated grass <i>Brachypodium distachyon</i> . Plant Journal, 2020, 103, 645-659.	5.7	11
81	The Genetic Control of Nectary Development. Trends in Plant Science, 2021, 26, 260-271.	8.8	10
82	Membrane Trafficking Proteins: A New Target to Identify Resistance to Viruses in Plants. Plants, 2021, 10, 2139.	3.5	10
83	Zero-Background Plasmid Vector for BAC Library Construction. BioTechniques, 1999, 26, 228-232.	1.8	7
84	Induced mutations in <i>SIE8</i> and <i>SIACO1</i> control tomato fruit maturation and shelf-life. Journal of Experimental Botany, 2021, 72, 6920-6932.	4.8	7
85	A single substitution in <i>Vacuolar protein sorting 4</i> is responsible for resistance to <i>Watermelon mosaic virus</i> in melon. Journal of Experimental Botany, 2022, 73, 4008-4021.	4.8	7
86	Ethylene plays a dual role in sex determination and fruit shape in cucurbits. Current Biology, 2022, 32, 2390-2401.e4.	3.9	7
87	Overexpression of a Cytochrome P450 Monooxygenase Involved in Orobanchol Biosynthesis Increases Susceptibility to Fusarium Head Blight. Frontiers in Plant Science, 2021, 12, 662025.	3.6	6
88	CmLHP1 proteins play a key role in plant development and sex determination in melon (<i>Cucumis) Tj ETQq0 0</i>	O rgBT /O	verlock 10 Tf !
89	A blessing in disguise: Transposable elements are more than parasites. Epigenetics, 2010, 5, 378-380.	2.7	5
90	Identification and Characterization of Tomato Mutants Affected in the <i>Rx </i> -Mediated Resistance to PVX Isolates. Molecular Plant-Microbe Interactions, 2012, 25, 341-354.	2.6	5

#	Article	IF	CITATIONS
91	The Melon Zym Locus Conferring Resistance to ZYMV: High Resolution Mapping and Candidate Gene Identification. Agronomy, 2021, 11, 2427.	3.0	5
92	Spatially expressed WIP genes control Arabidopsis embryonic root development. Nature Plants, 2022, 8, 635-645.	9.3	5
93	Study of the genetic and phenotypic variation among wild and cultivated clary sages provides interesting avenues for breeding programs of a perfume, medicinal and aromatic plant. PLoS ONE, 2021, 16, e0248954.	2.5	4