Nikolaos Koutsouleris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/873472/publications.pdf Version: 2024-02-01

		61984	58581
107	7,642	43	82
papers	7,642 citations	h-index	g-index
112 all docs	112 docs citations	112 times ranked	9102 citing authors

#	Article	IF	CITATIONS
1	Brief Report: Specificity of Interpersonal Synchrony Deficits to Autism Spectrum Disorder and Its Potential for Digitally Assisted Diagnostics. Journal of Autism and Developmental Disorders, 2022, 52, 3718-3726.	2.7	19
2	Deep Generative Medical Image Harmonization for Improving Cross‣ite Generalization in Deep Learning Predictors. Journal of Magnetic Resonance Imaging, 2022, 55, 908-916.	3.4	38
3	Multi-scale semi-supervised clustering of brain images: Deriving disease subtypes. Medical Image Analysis, 2022, 75, 102304.	11.6	28
4	Appetitive aggression is associated with lateralized activation in nucleus accumbens. Psychiatry Research - Neuroimaging, 2022, 319, 111425.	1.8	2
5	Relationships between global functioning and neuropsychological predictors in subjects at high risk of psychosis or with a recent onset of depression. World Journal of Biological Psychiatry, 2022, 23, 573-581.	2.6	3
6	Using combined environmental–clinical classification models to predict role functioning outcome in clinical high-risk states for psychosis and recent-onset depression. British Journal of Psychiatry, 2022, 220, 229-245.	2.8	1
7	Pattern of predictive features of continued cannabis use in patients with recent-onset psychosis and clinical high-risk for psychosis. NPJ Schizophrenia, 2022, 8, 19.	3.6	1
8	The potential of precision psychiatry: what is in reach?. British Journal of Psychiatry, 2022, 220, 175-178.	2.8	11
9	Concept of the Munich/Augsburg Consortium Precision in Mental Health for the German Center of Mental Health. Frontiers in Psychiatry, 2022, 13, 815718.	2.6	2
10	Counterpoint. Early intervention for psychosis risk syndromes: Minimizing risk and maximizing benefit. Schizophrenia Research, 2021, 227, 10-17.	2.0	28
11	The Psychopathology and Neuroanatomical Markers of Depression in Early Psychosis. Schizophrenia Bulletin, 2021, 47, 249-258.	4.3	13
12	A multivariate neuromonitoring approach to neuroplasticity-based computerized cognitive training in recent onset psychosis. Neuropsychopharmacology, 2021, 46, 828-835.	5.4	10
13	Brain Network Simulations Indicate Effects of Neuregulin-1 Genotype on Excitation-Inhibition Balance in Cortical Dynamics. Cerebral Cortex, 2021, 31, 2013-2025.	2.9	4
14	Identifying multimodal signatures underlying the somatic comorbidity of psychosis: the COMMITMENT roadmap. Molecular Psychiatry, 2021, 26, 722-724.	7.9	7
15	The network structure of schizotypy in the general population. European Archives of Psychiatry and Clinical Neuroscience, 2021, 271, 635-645.	3.2	17
16	Heterogeneity and Classification of Recent Onset Psychosis and Depression: A Multimodal Machine Learning Approach. Schizophrenia Bulletin, 2021, 47, 1130-1140.	4.3	23
17	Multimodal Machine Learning Workflows for Prediction of Psychosis in Patients With Clinical High-Risk Syndromes and Recent-Onset Depression. JAMA Psychiatry, 2021, 78, 195.	11.0	125
18	Association between age of cannabis initiation and gray matter covariance networks in recent onset psychosis. Neuropsychopharmacology, 2021, 46, 1484-1493.	5.4	14

#	Article	IF	CITATIONS
19	Cognitive subtypes in recent onset psychosis: distinct neurobiological fingerprints?. Neuropsychopharmacology, 2021, 46, 1475-1483.	5.4	15
20	Multimodal prognosis of negative symptom severity in individuals at increased risk of developing psychosis. Translational Psychiatry, 2021, 11, 312.	4.8	7
21	Promises and Pitfalls of the New Era of Computational Behavioral Neuroscience. Biological Psychiatry, 2021, 89, 845-846.	1.3	2
22	The progression of disorder-specific brain pattern expression in schizophrenia over 9 years. NPJ Schizophrenia, 2021, 7, 32.	3.6	10
23	Towards clinical application of prediction models for transition to psychosis: A systematic review and external validation study in the PRONIA sample. Neuroscience and Biobehavioral Reviews, 2021, 125, 478-492.	6.1	31
24	Toward Generalizable and Transdiagnostic Tools for Psychosis Prediction: An Independent Validation and Improvement of the NAPLS-2 Risk Calculator in the Multisite PRONIA Cohort. Biological Psychiatry, 2021, 90, 632-642.	1.3	32
25	The intervention, the patient and the illness $\hat{a} \in$ Personalizing non-invasive brain stimulation in psychiatry. Experimental Neurology, 2021, 341, 113713.	4.1	15
26	Characterisation of age and polarity at onset in bipolar disorder. British Journal of Psychiatry, 2021, 219, 659-669.	2.8	20
27	Multivariate pattern analysis of brain structure predicts functional outcome after auditory-based cognitive training interventions. NPJ Schizophrenia, 2021, 7, 40.	3.6	6
28	Reply to: Individualized Diagnostic and Prognostic Models for Psychosis Risk Syndromes: Do Not Underestimate Antipsychotic Exposure. Biological Psychiatry, 2021, 90, e37-e38.	1.3	0
29	Novel Gyrification Networks Reveal Links with Psychiatric Risk Factors in Early Illness. Cerebral Cortex, 2021, , .	2.9	2
30	Detailed clinical phenotyping and generalisability in prognostic models of functioning in at-risk populations. British Journal of Psychiatry, 2021, , 1-4.	2.8	0
31	Systematic Review of Functional MRI Applications for Psychiatric Disease Subtyping. Frontiers in Psychiatry, 2021, 12, 665536.	2.6	17
32	Acquisition and Use of â€~Priors' in Autism: Typical in Deciding Where to Look, Atypical in Deciding What Is There. Journal of Autism and Developmental Disorders, 2021, 51, 3744-3758.	2.7	7
33	Multivariate classification of schizophrenia and its familial risk based on load-dependent attentional control brain functional connectivity. Neuropsychopharmacology, 2020, 45, 613-621.	5.4	26
34	Sex Matters: A Multivariate Pattern Analysis of Sex- and Gender-Related Neuroanatomical Differences in Cis- and Transgender Individuals Using Structural Magnetic Resonance Imaging. Cerebral Cortex, 2020, 30, 1345-1356.	2.9	23
35	A Multidimensional Neural Maturation Index Reveals Reproducible Developmental Patterns in Children and Adolescents. Journal of Neuroscience, 2020, 40, 1265-1275.	3.6	33
36	A Pattern of Cognitive Deficits Stratified for Genetic and Environmental Risk Reliably Classifies Patients With Schizophrenia From Healthy Control Subjects. Biological Psychiatry, 2020, 87, 697-707.	1.3	33

3

#	Article	IF	CITATIONS
37	Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan. Neurolmage, 2020, 208, 116450.	4.2	260
38	Amygdala subnucleus volumes in psychosis high-risk state and first-episode psychosis. Schizophrenia Research, 2020, 215, 284-292.	2.0	22
39	S44. NEUROBIOLOGICAL FINGERPRINTS OF COGNITIVE SUBTYPES IN RECENT ONSET PSYCHOSIS PATIENTS. Schizophrenia Bulletin, 2020, 46, S49-S49.	4.3	1
40	Modeling Social Sensory Processing During Social Computerized Cognitive Training for Psychosis Spectrum: The Resting-State Approach. Frontiers in Psychiatry, 2020, 11, 554475.	2.6	3
41	Aberrant striatal dopamine links topographically with cortico-thalamic dysconnectivity in schizophrenia. Brain, 2020, 143, 3495-3505.	7.6	20
42	Traces of Trauma: A Multivariate Pattern Analysis of Childhood Trauma, Brain Structure, and Clinical Phenotypes. Biological Psychiatry, 2020, 88, 829-842.	1.3	35
43	A machine learning approach to risk assessment for alcohol withdrawal syndrome. European Neuropsychopharmacology, 2020, 35, 61-70.	0.7	5
44	Prevention of Psychosis. JAMA Psychiatry, 2020, 77, 755.	11.0	287
45	MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide. Brain, 2020, 143, 2312-2324.	7.6	183
46	Individualized Diagnostic and Prognostic Models for Patients With Psychosis Risk Syndromes: A Meta-analytic View on the State of the Art. Biological Psychiatry, 2020, 88, 349-360.	1.3	51
47	Two distinct neuroanatomical subtypes of schizophrenia revealed using machine learning. Brain, 2020, 143, 1027-1038.	7.6	158
48	An Investigation of Psychosis Subgroups With Prognostic Validation and Exploration of Genetic Underpinnings. JAMA Psychiatry, 2020, 77, 523.	11.0	39
49	Predicting sporadic Alzheimer's disease progression via inherited Alzheimer's diseaseâ€informed machineâ€learning. Alzheimer's and Dementia, 2020, 16, 501-511.	0.8	47
50	Clinical patterns differentially predict response to transcranial direct current stimulation (tDCS) and escitalopram in major depression: A machine learning analysis of the ELECT-TDCS study. Journal of Affective Disorders, 2020, 265, 460-467.	4.1	21
51	European college of neuropsychopharmacology network on the prevention of mental disorders and mental health promotion (ECNP PMD-MHP). European Neuropsychopharmacology, 2019, 29, 1301-1311.	0.7	38
52	Toward clinically useful models for individualised prognostication in psychosis. The Lancet Digital Health, 2019, 1, e244-e245.	12.3	2
53	Multi-outcome meta-analysis (MOMA) of cognitive remediation in schizophrenia: Revisiting the relevance of human coaching and elucidating interplay between multiple outcomes. Neuroscience and Biobehavioral Reviews, 2019, 107, 828-845.	6.1	62
54	Neurocognitive and neuroanatomical maturation in the clinical high-risk states for psychosis: A pattern recognition study. NeuroImage: Clinical, 2019, 21, 101624.	2.7	11

#	Article	IF	CITATIONS
55	Childhood Trauma in Schizophrenia: Current Findings and Research Perspectives. Frontiers in Neuroscience, 2019, 13, 274.	2.8	99
56	Machine Learning to Study Social Interaction Difficulties in ASD. Frontiers in Robotics and AI, 2019, 6, 132.	3.2	30
57	Effects of sedative drug use on the dopamine system: a systematic review and meta-analysis of in vivo neuroimaging studies. Neuropsychopharmacology, 2019, 44, 660-667.	5.4	26
58	Specific Substantial Dysconnectivity in Schizophrenia: A Transdiagnostic Multimodal Meta-analysis of Resting-State Functional and Structural Magnetic Resonance Imaging Studies. Biological Psychiatry, 2019, 85, 573-583.	1.3	93
59	Deciphering reward-based decision-making in schizophrenia: A meta-analysis and behavioral modeling of the Iowa Gambling Task. Schizophrenia Research, 2019, 204, 7-15.	2.0	23
60	Translational machine learning for psychiatric neuroimaging. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 91, 113-121.	4.8	56
61	Neuroanatomical heterogeneity of schizophrenia revealed by semi-supervised machine learning methods. Schizophrenia Research, 2019, 214, 43-50.	2.0	38
62	Brain Subtyping Enhances The Neuroanatomical Discrimination of Schizophrenia. Schizophrenia Bulletin, 2018, 44, 1060-1069.	4.3	78
63	Machine Learning Approaches for Clinical Psychology and Psychiatry. Annual Review of Clinical Psychology, 2018, 14, 91-118.	12.3	520
64	Multisite Machine Learning Analysis Provides a Robust Structural Imaging Signature of Schizophrenia Detectable Across Diverse Patient Populations and Within Individuals. Schizophrenia Bulletin, 2018, 44, 1035-1044.	4.3	118
65	Reply to: Sample Size, Model Robustness, and Classification Accuracy in Diagnostic Multivariate Neuroimaging Analyses. Biological Psychiatry, 2018, 84, e83-e84.	1.3	1
66	Predicting Response to Repetitive Transcranial Magnetic Stimulation in Patients With Schizophrenia Using Structural Magnetic Resonance Imaging: A Multisite Machine Learning Analysis. Schizophrenia Bulletin, 2018, 44, 1021-1034.	4.3	57
67	T137. CLASSIFICATION OF RECENT-ONSET PSYCHOSIS BASED ON RESTING-STATE FUNCTIONAL CONNECTIVITY AND THE RELATIONSHIP TO NEUROCOGNITIVE IMPAIRMENT. Schizophrenia Bulletin, 2018, 44, S168-S169.	4.3	0
68	Prediction Models of Functional Outcomes for Individuals in the Clinical High-Risk State for Psychosis or With Recent-Onset Depression. JAMA Psychiatry, 2018, 75, 1156.	11.0	251
69	Impaired recovery in affective disorders and schizophrenia: sharing a common pathophysiology?. European Archives of Psychiatry and Clinical Neuroscience, 2018, 268, 739-740.	3.2	1
70	Predicting Barriers to Treatment for Depression in a U.S. National Sample: A Cross-Sectional, Proof-of-Concept Study. Psychiatric Services, 2018, 69, 927-934.	2.0	31
71	Using neuroimaging to help predict the onset of psychosis. NeuroImage, 2017, 145, 209-217.	4.2	54
72	Detecting Neuroimaging Biomarkers for Depression: A Meta-analysis of Multivariate Pattern Recognition Studies. Biological Psychiatry, 2017, 82, 330-338.	1.3	116

#	Article	IF	CITATIONS
73	Neuroanatomical Predictors of Functional Outcome in Individuals at Ultra-High Risk for Psychosis. Schizophrenia Bulletin, 2016, 43, sbw086.	4.3	21
74	Transcranial direct current stimulation in children and adolescents: a comprehensive review. Journal of Neural Transmission, 2016, 123, 1219-1234.	2.8	81
75	Multisite prediction of 4-week and 52-week treatment outcomes in patients with first-episode psychosis: a machine learning approach. Lancet Psychiatry,the, 2016, 3, 935-946.	7.4	144
76	Classifying Schizophrenia Using Multimodal Multivariate Pattern Recognition Analysis: Evaluating the Impact of Individual Clinical Profiles on the Neurodiagnostic Performance. Schizophrenia Bulletin, 2016, 42, S110-S117.	4.3	78
77	Consensus paper of the WFSBP Task Force on Biological Markers: Criteria for biomarkers and endophenotypes of schizophrenia part II: Cognition, neuroimaging and genetics. World Journal of Biological Psychiatry, 2016, 17, 406-428.	2.6	30
78	Prediction of outcome in the psychosis prodrome using neuroanatomical pattern classification. Schizophrenia Research, 2016, 173, 159-165.	2.0	50
79	Classifying individuals at high-risk for psychosis based on functional brain activity during working memory processing. Neurolmage: Clinical, 2015, 9, 555-563.	2.7	21
80	Grey matter volume differences in non-affective psychosis and the effects of age of onset on grey matter volumes: A voxelwise study. Schizophrenia Research, 2015, 164, 74-82.	2.0	26
81	Detecting Neuroimaging Biomarkers for Schizophrenia: A Meta-Analysis of Multivariate Pattern Recognition Studies. Neuropsychopharmacology, 2015, 40, 1742-1751.	5.4	182
82	Individualized differential diagnosis of schizophrenia and mood disorders using neuroanatomical biomarkers. Brain, 2015, 138, 2059-2073.	7.6	132
83	Heterogeneity of Structural Brain Changes in Subtypes of Schizophrenia Revealed Using Magnetic Resonance Imaging Pattern Analysis. Schizophrenia Bulletin, 2015, 41, 74-84.	4.3	72
84	Detecting the Psychosis Prodrome Across High-Risk Populations Using Neuroanatomical Biomarkers. Schizophrenia Bulletin, 2015, 41, 471-482.	4.3	136
85	Genetics, Cognition, and Neurobiology of Schizotypal Personality: A Review of the Overlap with Schizophrenia. Frontiers in Psychiatry, 2014, 5, 18.	2.6	208
86	Accelerated Brain Aging in Schizophrenia and Beyond: A Neuroanatomical Marker of Psychiatric Disorders. Schizophrenia Bulletin, 2014, 40, 1140-1153.	4.3	369
87	Brain size and white matter content of cerebrospinal tracts determine the upper cervical cord area: evidence from structural brain MRI. Neuroradiology, 2013, 55, 963-970.	2.2	20
88	Distinguishing Prodromal From First-Episode Psychosis Using Neuroanatomical Single-Subject Pattern Recognition. Schizophrenia Bulletin, 2013, 39, 1105-1114.	4.3	64
89	BrainAGE in Mild Cognitive Impaired Patients: Predicting the Conversion to Alzheimer's Disease. PLoS ONE, 2013, 8, e67346.	2.5	412
90	Early Recognition and Disease Prediction in the At-Risk Mental States for Psychosis Using Neurocognitive Pattern Classification. Schizophrenia Bulletin, 2012, 38, 1200-1215.	4.3	121

#	Article	IF	CITATIONS
91	Disease Prediction in the At-Risk Mental State for Psychosis Using Neuroanatomical Biomarkers: Results From the FePsy Study. Schizophrenia Bulletin, 2012, 38, 1234-1246.	4.3	139
92	Association between brain structure and psychometric schizotypy in healthy individuals. World Journal of Biological Psychiatry, 2012, 13, 544-549.	2.6	54
93	Diagnostic neuroimaging across diseases. Neurolmage, 2012, 61, 457-463.	4.2	240
94	Variation within the Huntington's Disease Gene Influences Normal Brain Structure. PLoS ONE, 2012, 7, e29809.	2.5	30
95	Multivariate patterns of brain–cognition associations relating to vulnerability and clinical outcome in the atâ€risk mental states for psychosis. Human Brain Mapping, 2012, 33, 2104-2124.	3.6	23
96	Anterior cingulate cortex gray matter abnormalities in adults with attention deficit hyperactivity disorder: A voxel-based morphometry study. Psychiatry Research - Neuroimaging, 2011, 191, 31-35.	1.8	82
97	Differences in hippocampal volume between major depression and schizophrenia: a comparative neuroimaging study. European Archives of Psychiatry and Clinical Neuroscience, 2010, 260, 127-137.	3.2	53
98	Interaction of childhood stress with hippocampus and prefrontal cortex volume reduction in major depression. Journal of Psychiatric Research, 2010, 44, 799-807.	3.1	275
99	Orbitofrontal volume reductions during emotion recognition in patients with major depression. Journal of Psychiatry and Neuroscience, 2010, 35, 311-320.	2.4	101
100	Childhood Stress, Serotonin Transporter Gene and Brain Structures in Major Depression. Neuropsychopharmacology, 2010, 35, 1383-1390.	5.4	175
101	Neuroanatomical correlates of executive dysfunction in the at-risk mental state for psychosis. Schizophrenia Research, 2010, 123, 160-174.	2.0	46
102	Use of neuroanatomical pattern regression to predict the structural brain dynamics of vulnerability and transition to psychosis. Schizophrenia Research, 2010, 123, 175-187.	2.0	58
103	Neuronal correlates of emotional processing in patients with major depression. World Journal of Biological Psychiatry, 2009, 10, 202-208.	2.6	81
104	Neuroanatomical correlates of different vulnerability states for psychosis and their clinical outcomes. British Journal of Psychiatry, 2009, 195, 218-226.	2.8	85
105	Use of Neuroanatomical Pattern Classification to Identify Subjects in At-Risk Mental States of Psychosis and Predict Disease Transition. Archives of General Psychiatry, 2009, 66, 700.	12.3	382
106	Structural correlates of psychopathological symptom dimensions in schizophrenia: A voxel-based morphometric study. NeuroImage, 2008, 39, 1600-1612.	4.2	166
107	In-vivo topography of structural alterations of the anterior cingulate in patients with schizophrenia: New findings and comparison with the literature. Schizophrenia Research, 2007, 96, 34-45.	2.0	21