Richard G Pestell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8734079/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stat3 as an Oncogene. Cell, 1999, 98, 295-303.	28.9	2,610
2	NF-κB Controls Cell Growth and Differentiation through Transcriptional Regulation of Cyclin D1. Molecular and Cellular Biology, 1999, 19, 5785-5799.	2.3	1,242
3	The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle, 2009, 8, 3984-4001.	2.6	1,130
4	Cancer metabolism: a therapeutic perspective. Nature Reviews Clinical Oncology, 2017, 14, 11-31.	27.6	1,028
5	Caveolin-1 Null Mice Are Viable but Show Evidence of Hyperproliferative and Vascular Abnormalities. Journal of Biological Chemistry, 2001, 276, 38121-38138.	3.4	957
6	Minireview: Cyclin D1: Normal and Abnormal Functions. Endocrinology, 2004, 145, 5439-5447.	2.8	866
7	Transforming p21 Mutants and c-Ets-2 Activate the Cyclin D1 Promoter through Distinguishable Regions. Journal of Biological Chemistry, 1995, 270, 23589-23597.	3.4	724
8	Cancer stem cells. International Journal of Biochemistry and Cell Biology, 2012, 44, 2144-2151.	2.8	530
9	Ketones and lactate "fuel―tumor growth and metastasis. Cell Cycle, 2010, 9, 3506-3514.	2.6	526
10	The mammary gland iodide transporter is expressed during lactation and in breast cancer. Nature Medicine, 2000, 6, 871-878.	30.7	435
11	Evidence for a stromal-epithelial "lactate shuttle―in human tumors. Cell Cycle, 2011, 10, 1772-1783.	2.6	393
12	Opposing Action of Estrogen Receptors α and β on Cyclin D1 Gene Expression. Journal of Biological Chemistry, 2002, 277, 24353-24360.	3.4	390
13	Autophagy in cancer associated fibroblasts promotes tumor cell survival. Cell Cycle, 2010, 9, 3515-3533.	2.6	377
14	Cancer stem cell metabolism. Breast Cancer Research, 2016, 18, 55.	5.0	377
15	NF-κB and cell-cycle regulation: the cyclin connection. Cytokine and Growth Factor Reviews, 2001, 12, 73-90.	7.2	352
16	The RASSF1A Tumor Suppressor Blocks Cell Cycle Progression and Inhibits Cyclin D1 Accumulation. Molecular and Cellular Biology, 2002, 22, 4309-4318.	2.3	352
17	p300 and p300/cAMP-response Element-binding Protein-associated Factor Acetylate the Androgen Receptor at Sites Governing Hormone-dependent Transactivation. Journal of Biological Chemistry, 2000, 275, 20853-20860.	3.4	344
18	Cyclin D1 Is Required for Transformation by Activated Neu and Is Induced through an E2F-Dependent Signaling Pathway. Molecular and Cellular Biology, 2000, 20, 672-683.	2.3	342

2

#	Article	IF	CITATIONS
19	A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. Journal of Cell Biology, 2008, 182, 509-517.	5.2	342
20	Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. Journal of Clinical Investigation, 2005, 115, 1163-1176.	8.2	338
21	Adipocyte-secreted factors synergistically promote mammary tumorigenesis through induction of anti-apoptotic transcriptional programs and proto-oncogene stabilization. Oncogene, 2003, 22, 6408-6423.	5.9	317
22	Direct Acetylation of the Estrogen Receptor Î \pm Hinge Region by p300 Regulates Transactivation and Hormone Sensitivity. Journal of Biological Chemistry, 2001, 276, 18375-18383.	3.4	312
23	Constitutive and Growth Factor-Regulated Phosphorylation of Caveolin-1 Occurs at the Same Site (Tyr-14) in Vivo: Identification of a c-Src/Cav-1/Grb7 Signaling Cassette. Molecular Endocrinology, 2000, 14, 1750-1775.	3.7	307
24	An Absence of Stromal Caveolin-1 Expression Predicts Early Tumor Recurrence and Poor Clinical Outcome in Human Breast Cancers. American Journal of Pathology, 2009, 174, 2023-2034.	3.8	307
25	SIRT1 Deacetylation and Repression of p300 Involves Lysine Residues 1020/1024 within the Cell Cycle Regulatory Domain 1. Journal of Biological Chemistry, 2005, 280, 10264-10276.	3.4	301
26	Ketones and lactate increase cancer cell "stemness,―driving recurrence, metastasis and poor clinical outcome in breast cancer. Cell Cycle, 2011, 10, 1271-1286.	2.6	295
27	E2F1 and c-Myc Potentiate Apoptosis through Inhibition of NF-κB Activity that Facilitates MnSOD-Mediated ROS Elimination. Molecular Cell, 2002, 9, 1017-1029.	9.7	276
28	Integration of Rac-dependent Regulation of Cyclin D1 Transcription through a Nuclear Factor-lºB-dependent Pathway. Journal of Biological Chemistry, 1999, 274, 25245-25249.	3.4	260
29	Caveolin-1 Expression Negatively Regulates Cell Cycle Progression by Inducing G ₀ /G ₁ Arrest via a p53/p21 ^{WAF1/Cip1} -dependent Mechanism. Molecular Biology of the Cell, 2001, 12, 2229-2244.	2.1	259
30	Caveolin-1 Gene Disruption Promotes Mammary Tumorigenesis and Dramatically Enhances Lung Metastasis in Vivo. Journal of Biological Chemistry, 2004, 279, 51630-51646.	3.4	259
31	Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ. Cell Cycle, 2011, 10, 4047-4064.	2.6	256
32	Warburg Meets Autophagy: Cancer-Associated Fibroblasts Accelerate Tumor Growth and Metastasis <i>via</i> Oxidative Stress, Mitophagy, and Aerobic Glycolysis. Antioxidants and Redox Signaling, 2012, 16, 1264-1284.	5.4	254
33	Metabolic reprogramming of cancer-associated fibroblasts by TGF-β drives tumor growth: Connecting TGF-β signaling with "Warburg-like―cancer metabolism and L-lactate production. Cell Cycle, 2012, 11, 3019-3035.	2.6	249
34	Caveolin-1 and Cancer Metabolism in the Tumor Microenvironment: Markers, Models, and Mechanisms. Annual Review of Pathology: Mechanisms of Disease, 2012, 7, 423-467.	22.4	249
35	The autophagic tumor stroma model of cancer. Cell Cycle, 2010, 9, 3485-3505.	2.6	248
36	Gene expression phenotypic models that predict the activity of oncogenic pathways. Nature Genetics, 2003, 34, 226-230.	21.4	247

#	Article	IF	CITATIONS
37	Cyclin D1 Inhibits Peroxisome Proliferator-activated Receptor Î ³ -mediated Adipogenesis through Histone Deacetylase Recruitment. Journal of Biological Chemistry, 2005, 280, 16934-16941.	3.4	246
38	Cancer cells metabolically "fertilize" the tumor microenvironment with hydrogen peroxide, driving the Warburg effect. Cell Cycle, 2011, 10, 2504-2520.	2.6	245
39	Acetylation of Androgen Receptor Enhances Coactivator Binding and Promotes Prostate Cancer Cell Growth. Molecular and Cellular Biology, 2003, 23, 8563-8575.	2.3	244
40	Role of direct interaction in BRCA1 inhibition of estrogen receptor activity. Oncogene, 2001, 20, 77-87.	5.9	243
41	CCR5 Antagonist Blocks Metastasis of Basal Breast Cancer Cells. Cancer Research, 2012, 72, 3839-3850.	0.9	240
42	Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. Journal of Cell Biology, 2006, 173, 533-544.	5.2	239
43	Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: Implications for breast cancer and DCIS therapy with autophagy inhibitors. Cell Cycle, 2010, 9, 2423-2433.	2.6	238
44	Cyclin D1 Is Transcriptionally Regulated by and Required for Transformation by Activated Signal Transducer and Activator of Transcription 3. Cancer Research, 2006, 66, 2544-2552.	0.9	233
45	BRCA1 gene in breast cancer. Journal of Cellular Physiology, 2003, 196, 19-41.	4.1	228
46	The Integrin-linked Kinase Regulates the Cyclin D1 Gene through Glycogen Synthase Kinase 3β and cAMP-responsive Element-binding Protein-dependent Pathways. Journal of Biological Chemistry, 2000, 275, 32649-32657.	3.4	225
47	microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8231-8236.	7.1	224
48	Cell Cycle Arrest and Repression of Cyclin D1 Transcription by INI1/hSNF5. Molecular and Cellular Biology, 2002, 22, 5975-5988.	2.3	223
49	Fos Family Members Induce Cell Cycle Entry by Activating Cyclin D1. Molecular and Cellular Biology, 1998, 18, 5609-5619.	2.3	221
50	Stromal–epithelial metabolic coupling in cancer: Integrating autophagy and metabolism in the tumor microenvironment. International Journal of Biochemistry and Cell Biology, 2011, 43, 1045-1051.	2.8	218
51	pp60v- Induction of Cyclin D1 Requires Collaborative Interactions between the Extracellular Signal-regulated Kinase, p38, and Jun Kinase Pathways. Journal of Biological Chemistry, 1999, 274, 7341-7350.	3.4	214
52	Hormonal Control of Androgen Receptor Function through SIRT1. Molecular and Cellular Biology, 2006, 26, 8122-8135.	2.3	214
53	Cellular Stress Induces the Tyrosine Phosphorylation of Caveolin-1 (Tyr14) via Activation of p38 Mitogen-activated Protein Kinase and c-Src kinase. Journal of Biological Chemistry, 2001, 276, 8094-8103.	3.4	213
54	Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the "reverse Warburg effect― A transcriptional informatics analysis with validation. Cell Cycle, 2010, 9, 2201-2219.	2.6	212

#	Article	IF	CITATIONS
55	Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis, via glycolysis and ketone production. Cell Cycle, 2012, 11, 2285-2302.	2.6	209
56	Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis. Cell Cycle, 2011, 10, 2440-2449.	2.6	208
57	The Canonical NF-κB Pathway Governs Mammary Tumorigenesis in Transgenic Mice and Tumor Stem Cell Expansion. Cancer Research, 2010, 70, 10464-10473.	0.9	207
58	HIF1-alpha functions as a tumor promoter in cancer-associated fibroblasts, and as a tumor suppressor in breast cancer cells. Cell Cycle, 2010, 9, 3534-3551.	2.6	207
59	Presenilin 1 Negatively Regulates β-Catenin/T Cell Factor/Lymphoid Enhancer Factor-1 Signaling Independently of β-Amyloid Precursor Protein and Notch Processing. Journal of Cell Biology, 2001, 152, 785-794.	5.2	202
60	Endostatin Causes G1 Arrest of Endothelial Cells through Inhibition of Cyclin D1. Journal of Biological Chemistry, 2002, 277, 16464-16469.	3.4	197
61	Cyclin D1 Repression of Peroxisome Proliferator-Activated Receptor Î ³ Expression and Transactivation. Molecular and Cellular Biology, 2003, 23, 6159-6173.	2.3	195
62	Regulation of PCNA and Cyclin D1 Expression and Epithelial Morphogenesis by the ZO-1-Regulated Transcription Factor ZONAB/DbpA. Molecular and Cellular Biology, 2006, 26, 2387-2398.	2.3	195
63	High Glucose Increases Angiopoietin-2 Transcription in Microvascular Endothelial Cells through Methylglyoxal Modification of mSin3A. Journal of Biological Chemistry, 2007, 282, 31038-31045.	3.4	195
64	The reverse Warburg Effect: Glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle, 2010, 9, 1960-1971.	2.6	192
65	Cyclin D1 repression of nuclear respiratory factor 1 integrates nuclear DNA synthesis and mitochondrial function. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11567-11572.	7.1	189
66	Reciprocal Regulation of Neu Tyrosine Kinase Activity and Caveolin-1 Protein Expression in Vitro and in Vivo. Journal of Biological Chemistry, 1998, 273, 20448-20455.	3.4	188
67	New Roles of Cyclin D1. American Journal of Pathology, 2013, 183, 3-9.	3.8	186
68	p21-activated Kinase-1 Signaling Mediates Cyclin D1 Expression in Mammary Epithelial and Cancer Cells. Journal of Biological Chemistry, 2004, 279, 1422-1428.	3.4	185
69	CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, "fueling―tumor growth via paracrine interactions, without an increase in neo-angiogenesis. Cell Cycle, 2012, 11, 3599-3610.	2.6	182
70	Cyclins and Cell Cycle Control in Cancer and Disease. Genes and Cancer, 2012, 3, 649-657.	1.9	180
71	Transcriptional Activation of Cyclin D1 Promoter by FAK Contributes to Cell Cycle Progression. Molecular Biology of the Cell, 2001, 12, 4066-4077.	2.1	179
72	Cyclin D1 Binds the Androgen Receptor and Regulates Hormone-Dependent Signaling in a p300/CBP-Associated Factor (P/CAF)-Dependent Manner. Molecular Endocrinology, 2001, 15, 797-811.	3.7	178

#	Article	IF	CITATIONS
73	Caveolin-1 Mutations (P132L and Null) and the Pathogenesis of Breast Cancer. American Journal of Pathology, 2002, 161, 1357-1369.	3.8	176
74	SIRT1 and endocrine signaling. Trends in Endocrinology and Metabolism, 2006, 17, 186-191.	7.1	175
75	Molecular Genetics of the Caveolin Gene Family: Implications for Human Cancers, Diabetes, Alzheimer Disease, and Muscular Dystrophy. American Journal of Human Genetics, 1998, 63, 1578-1587.	6.2	171
76	Akt1 governs breast cancer progression in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7438-7443.	7.1	170
77	Acetylation of nuclear receptors in cellular growth and apoptosis. Biochemical Pharmacology, 2004, 68, 1199-1208.	4.4	168
78	Activation of the cyclin D1 Gene by the E1A-associated Protein p300 through AP-1 Inhibits Cellular Apoptosis. Journal of Biological Chemistry, 1999, 274, 34186-34195.	3.4	166
79	Cyclin D1 Determines Mitochondrial Function InVivo. Molecular and Cellular Biology, 2006, 26, 5449-5469.	2.3	166
80	The autophagic tumor stroma model of cancer or "battery-operated tumor growth― Cell Cycle, 2010, 9, 4297-4306.	2.6	165
81	p21 ^{CIP1} attenuates Ras- and c-Myc-dependent breast tumor epithelial mesenchymal transition and cancer stem cell-like gene expression in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19035-19039.	7.1	163
82	Caveolin-1 Expression Inhibits Wnt/β-Catenin/Lef-1 Signaling by Recruiting β-Catenin to Caveolae Membrane Domains. Journal of Biological Chemistry, 2000, 275, 23368-23377.	3.4	162
83	Cyclin D1 Regulates Cellular Migration through the Inhibition of Thrombospondin 1 and ROCK Signaling. Molecular and Cellular Biology, 2006, 26, 4240-4256.	2.3	162
84	Mitochondrial metabolism in cancer metastasis. Cell Cycle, 2012, 11, 1445-1454.	2.6	162
85	Inhibition of Cellular Proliferation through lκB Kinase-Independent and Peroxisome Proliferator-Activated Receptor γ-Dependent Repression of Cyclin D1. Molecular and Cellular Biology, 2001, 21, 3057-3070.	2.3	157
86	Dissociation of EphB2 Signaling Pathways Mediating Progenitor Cell Proliferation and Tumor Suppression. Cell, 2009, 139, 679-692.	28.9	157
87	Androgen Receptor Acetylation Governs trans Activation and MEKK1-Induced Apoptosis without Affecting In Vitro Sumoylation and trans -Repression Function. Molecular and Cellular Biology, 2002, 22, 3373-3388.	2.3	155
88	The <i>NF2</i> Tumor Suppressor Gene Product, Merlin, Inhibits Cell Proliferation and Cell Cycle Progression by Repressing Cyclin D1 Expression. Molecular and Cellular Biology, 2005, 25, 2384-2394.	2.3	155
89	The Role of Breast Cancer Stem Cells in Metastasis and Therapeutic Implications. American Journal of Pathology, 2011, 179, 2-11.	3.8	155
90	Anti-estrogen resistance in breast cancer is induced by the tumor microenvironment and can be overcome by inhibiting mitochondrial function in epithelial cancer cells. Cancer Biology and Therapy, 2011, 12, 924-938.	3.4	154

#	Article	IF	CITATIONS
91	The role of CD44 in epithelial–mesenchymal transition and cancer development. OncoTargets and Therapy, 2015, 8, 3783.	2.0	154
92	Inhibition of Cyclin D1 Kinase Activity Is Associated with E2F-Mediated Inhibition of Cyclin D1 Promoter Activity through E2F and Sp1. Molecular and Cellular Biology, 1998, 18, 3212-3222.	2.3	152
93	Overview of cyclins D1 function in cancer and the CDK inhibitor landscape: past and present. Expert Opinion on Investigational Drugs, 2014, 23, 295-304.	4.1	152
94	Caveolin-1 Promotes Tumor Progression in an Autochthonous Mouse Model of Prostate Cancer. Journal of Biological Chemistry, 2005, 280, 25134-25145.	3.4	151
95	Recent Advances Targeting CCR5 for Cancer and Its Role in Immuno-Oncology. Cancer Research, 2019, 79, 4801-4807.	0.9	150
96	<i>Cyclin D1</i> Governs Adhesion and Motility of Macrophages. Molecular Biology of the Cell, 2003, 14, 2005-2015.	2.1	147
97	Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells. Cancer Biology and Therapy, 2011, 12, 1085-1097.	3.4	145
98	p42/44 MAP Kinase-dependent and -independent Signaling Pathways Regulate Caveolin-1 Gene Expression. Journal of Biological Chemistry, 1999, 274, 32333-32341.	3.4	144
99	Cyclin D1/Cyclin-Dependent Kinase 4 Interacts with Filamin A and Affects the Migration and Invasion Potential of Breast Cancer Cells. Cancer Research, 2010, 70, 2105-2114.	0.9	144
100	Energy transfer in "parasitic" cancer metabolism. Cell Cycle, 2011, 10, 4208-4216.	2.6	144
101	Cyclin D1 Genetic Heterozygosity Regulates Colonic Epithelial Cell Differentiation and Tumor Number in Apc Min Mice. Molecular and Cellular Biology, 2004, 24, 7598-7611.	2.3	143
102	IKKα Regulates Mitogenic Signaling through Transcriptional Induction of Cyclin D1 via Tcf. Molecular Biology of the Cell, 2003, 14, 585-599.	2.1	142
103	An absence of stromal caveolin-1 is associated with advanced prostate cancer, metastatic disease spread and epithelial Akt activation. Cell Cycle, 2009, 8, 2420-2424.	2.6	141
104	Phosphorylation of Estrogen Receptor α Blocks Its Acetylation and Regulates Estrogen Sensitivity. Cancer Research, 2004, 64, 9199-9208.	0.9	140
105	In Vivo Evidence That BMP Signaling Is Necessary for Apoptosis in the Mouse Limb. Developmental Biology, 2002, 249, 108-120.	2.0	137
106	Cytokine production and inflammation drive autophagy in the tumor microenvironment. Cell Cycle, 2011, 10, 1784-1793.	2.6	137
107	Caveolin-1 Potentiates Estrogen Receptor α (ERα) Signaling. Journal of Biological Chemistry, 1999, 274, 33551-33556.	3.4	136
108	Human breast cancer-associated fibroblasts (CAFs) show caveolin-1 down-regulation and RB tumor suppressor functional inactivation: Implications for the response to hormonal therapy. Cancer Biology and Therapy, 2008, 7, 1212-1225.	3.4	136

#	Article	IF	CITATIONS
109	Transcriptional evidence for the "Reverse Warburg Effect" in human breast cancer tumor stroma and metastasis: Similarities with oxidative stress, inflammation, Alzheimer's disease, and "Neuron-Glia Metabolic Coupling". Aging, 2010, 2, 185-199.	3.1	136
110	microRNA, Cell Cycle, and Human Breast Cancer. American Journal of Pathology, 2010, 176, 1058-1064.	3.8	133
111	Breast cancer stem cells. International Journal of Biochemistry and Cell Biology, 2012, 44, 573-577.	2.8	133
112	BRCA1 Regulates Acetylation and Ubiquitination of Estrogen Receptor-α. Molecular Endocrinology, 2010, 24, 76-90.	3.7	132
113	Angiotensin II Activation of Cyclin D1-dependent Kinase Activity. Journal of Biological Chemistry, 1996, 271, 22570-22577.	3.4	130
114	Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: Evidence for stromal-epithelial metabolic coupling. Cell Cycle, 2010, 9, 2412-2422.	2.6	130
115	Galectin-3 enhances cyclin D1 promoter activity through SP1 and a cAMP-responsive element in human breast epithelial cells. Oncogene, 2002, 21, 8001-8010.	5.9	128
116	The Cyclin D1 Gene Is Transcriptionally Repressed by Caveolin-1. Journal of Biological Chemistry, 2000, 275, 21203-21209.	3.4	126
117	Recent advances of highly selective CDK4/6 inhibitors in breast cancer. Journal of Hematology and Oncology, 2017, 10, 97.	17.0	126
118	DACH1 Inhibits Transforming Growth Factor-Î ² Signaling through Binding Smad4. Journal of Biological Chemistry, 2003, 278, 51673-51684.	3.4	125
119	Stromal caveolin-1 levels predict early DCIS progression to invasive breast cancer. Cancer Biology and Therapy, 2009, 8, 1071-1079.	3.4	125
120	Characterization of a Rac1 Signaling Pathway to Cyclin D1 Expression in Airway Smooth Muscle Cells. Journal of Biological Chemistry, 1999, 274, 22065-22071.	3.4	123
121	Caveolin-1â^'/â^' Null Mammary Stromal Fibroblasts Share Characteristics with Human Breast Cancer-Associated Fibroblasts. American Journal of Pathology, 2009, 174, 746-761.	3.8	123
122	Caveolin-1 and mitochondrial SOD2 (MnSOD) function as tumor suppressors in the stromal microenvironment. Cancer Biology and Therapy, 2011, 11, 383-394.	3.4	122
123	DACH1 Is a Cell Fate Determination Factor That Inhibits Cyclin D1 and Breast Tumor Growth. Molecular and Cellular Biology, 2006, 26, 7116-7129.	2.3	121
124	c-Jun Induces Mammary Epithelial Cellular Invasion and Breast Cancer Stem Cell Expansion. Journal of Biological Chemistry, 2010, 285, 8218-8226.	3.4	119
125	p300 Modulates the BRCA1 inhibition of estrogen receptor activity. Cancer Research, 2002, 62, 141-51.	0.9	119
126	Cyclin D1 Induction of Cellular Migration Requires p27KIP1. Cancer Research, 2006, 66, 9986-9994.	0.9	118

#	Article	IF	CITATIONS
127	Lamellipodia in invasion. Seminars in Cancer Biology, 2001, 11, 119-128.	9.6	116
128	CTGF drives autophagy, glycolysis and senescence in cancer-associated fibroblasts via HIF1 activation, metabolically promoting tumor growth. Cell Cycle, 2012, 11, 2272-2284.	2.6	116
129	Fibroblast Growth Factor-2 Induces Lef/Tcf-dependent Transcription in Human Endothelial Cells. Journal of Biological Chemistry, 2002, 277, 45847-45853.	3.4	115
130	Alternative Cyclin D1 Splice Forms Differentially Regulate the DNA Damage Response. Cancer Research, 2010, 70, 8802-8811.	0.9	115
131	Intestinal Tumor Progression Is Associated with Altered Function of KLF5. Journal of Biological Chemistry, 2004, 279, 12093-12101.	3.4	114
132	Biological rationale for the use of DNA methyltransferase inhibitors as new strategy for modulation of tumor response to chemotherapy and radiation. Molecular Cancer, 2010, 9, 305.	19.2	113
133	Cyclin D1 Functions in Cell Migration. Cell Cycle, 2006, 5, 2440-2442.	2.6	112
134	Mitochondrial Fission Induces Glycolytic Reprogramming in Cancer-Associated Myofibroblasts, Driving Stromal Lactate Production, and Early Tumor Growth. Oncotarget, 2012, 3, 798-810.	1.8	112
135	Trans-repression of β-Catenin Activity by Nuclear Receptors. Journal of Biological Chemistry, 2003, 278, 48137-48145.	3.4	111
136	Mechanical force modulates global gene expression and β-catenin signaling in colon cancer cells. Journal of Cell Science, 2007, 120, 2672-2682.	2.0	110
137	Mitochondrial oxidative stress in cancer-associated fibroblasts drives lactate production, promoting breast cancer tumor growth. Cell Cycle, 2011, 10, 4065-4073.	2.6	110
138	Caveolin-1 Inhibits Epidermal Growth Factor-stimulated Lamellipod Extension and Cell Migration in Metastatic Mammary Adenocarcinoma Cells (MTLn3). Journal of Biological Chemistry, 2000, 275, 20717-20725.	3.4	109
139	Two-compartment tumor metabolism: Autophagy in the tumor microenvironment and oxidative mitochondrial metabolism (OXPHOS) in cancer cells. Cell Cycle, 2012, 11, 2545-2559.	2.6	107
140	Role of NF-κB signaling in hepatocyte growth factor/scatter factor-mediated cell protection. Oncogene, 2005, 24, 1749-1766.	5.9	106
141	ChIP sequencing of cyclin D1 reveals a transcriptional role in chromosomal instability in mice. Journal of Clinical Investigation, 2012, 122, 833-843.	8.2	106
142	Regulation of the androgen receptor by SET9-mediated methylation. Nucleic Acids Research, 2011, 39, 1266-1279.	14.5	105
143	Tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces cell proliferation in normal human bronchial epithelial cells through NFI®B activation and cyclin D1 up-regulation. Toxicology and Applied Pharmacology, 2005, 205, 133-148.	2.8	102
144	Activating Transcription Factor 3 Induces DNA Synthesis and Expression of Cyclin D1 in Hepatocytes. Journal of Biological Chemistry, 2001, 276, 27272-27280.	3.4	99

#	Article	IF	CITATIONS
145	Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated fibroblasts drives stromal nutrient production and tumor growth. Cancer Biology and Therapy, 2011, 12, 1101-1113.	3.4	99
146	Understanding the metabolic basis of drug resistance. Cell Cycle, 2011, 10, 2521-2528.	2.6	97
147	CCR5 Governs DNA Damage Repair and Breast Cancer Stem Cell Expansion. Cancer Research, 2018, 78, 1657-1671.	0.9	97
148	Altered Rho GTPase Signaling Pathways in Breast Cancer Cells. Breast Cancer Research and Treatment, 2004, 84, 43-48.	2.5	95
149	PPARÎ ³ activation induces autophagy in breast cancer cells. International Journal of Biochemistry and Cell Biology, 2009, 41, 2334-2342.	2.8	95
150	Caveolin-1 and Accelerated Host Aging in the Breast Tumor Microenvironment. American Journal of Pathology, 2012, 181, 278-293.	3.8	95
151	Caloric restriction augments radiation efficacy in breast cancer. Cell Cycle, 2013, 12, 1955-1963.	2.6	95
152	Cyclin D1 Antagonizes BRCA1 Repression of Estrogen Receptor α Activity. Cancer Research, 2005, 65, 6557-6567.	0.9	94
153	Gastrin-mediated activation of cyclin D1 transcription involves β-catenin and CREB pathways in gastric cancer cells. Oncogene, 2004, 23, 3689-3699.	5.9	93
154	Regulation of αA-crystallin via Pax6, c-Maf, CREB and a broad domain of lens-specific chromatin. EMBO Journal, 2006, 25, 2107-2118.	7.8	93
155	Caveolin-1 Mutations in Human Breast Cancer. American Journal of Pathology, 2006, 168, 1998-2013.	3.8	92
156	Dachshund inhibits oncogene-induced breast cancer cellular migration and invasion through suppression of interleukin-8. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6924-6929.	7.1	92
157	Growth inhibition of human hepatoma cells by acyclic retinoid is associated with induction of p21(CIP1) and inhibition of expression of cyclin D1. Cancer Research, 2002, 62, 3997-4006.	0.9	92
158	Expression Profiling Identifies Altered Expression of Genes That Contribute to the Inhibition of Transforming Growth Factor-1² Signaling in Ovarian Cancer. Cancer Research, 2006, 66, 8404-8412.	0.9	90
159	MEK/ERK inhibitor U0126 affects <i>in vitro</i> and <i>in vivo</i> growth of embryonal rhabdomyosarcoma. Molecular Cancer Therapeutics, 2009, 8, 543-551.	4.1	89
160	Activation of Transcription Factors AP-1 and NF-κB in Murine Chagasic Myocarditis. Infection and Immunity, 2003, 71, 2859-2867.	2.2	88
161	Caveolin-1-Deficient Mice Show Defects in Innate Immunity and Inflammatory Immune Response during Salmonella enterica Serovar Typhimurium Infection. Infection and Immunity, 2006, 74, 6665-6674.	2.2	86
162	The potential to target CCL5/CCR5 in breast cancer. Expert Opinion on Therapeutic Targets, 2014, 18, 1265-1275.	3.4	86

#	Article	IF	CITATIONS
163	Transforming Potential of Dbl Family Proteins Correlates with Transcription from the Cyclin D1 Promoter but Not with Activation of Jun NH2-terminal Kinase, p38/Mpk2, Serum Response Factor, or c-Jun. Journal of Biological Chemistry, 1998, 273, 16739-16747.	3.4	84
164	Cyclin D1 Represses p300 Transactivation through a Cyclin-dependent Kinase-independent Mechanism. Journal of Biological Chemistry, 2005, 280, 29728-29742.	3.4	82
165	Indomethacin induces differential expression of beta-catenin, gamma-catenin and T-cell factor target genes in human colorectal cancer cells. Carcinogenesis, 2002, 23, 107-114.	2.8	81
166	BRCA1 Inhibition of Telomerase Activity in Cultured Cells. Molecular and Cellular Biology, 2003, 23, 8668-8690.	2.3	81
167	Epigenetic regulation of nuclear steroid receptors. Biochemical Pharmacology, 2006, 72, 1589-1596.	4.4	80
168	EYA1 Phosphatase Function Is Essential to Drive Breast Cancer Cell Proliferation through Cyclin D1. Cancer Research, 2013, 73, 4488-4499.	0.9	80
169	Catalytic Activation of Extracellular Signal-regulated Kinases Induces Cyclin D ₁ Expression in Primary Tracheal Myocytes. American Journal of Respiratory Cell and Molecular Biology, 1998, 18, 736-740.	2.9	79
170	Epidermal Growth Factor Receptor Distribution during Chemotactic Responses. Molecular Biology of the Cell, 2000, 11, 3873-3883.	2.1	78
171	MEK/ERK Inhibitor U0126 Increases the Radiosensitivity of Rhabdomyosarcoma Cells <i>In vitro</i> and <i>In vivo</i> by Downregulating Growth and DNA Repair Signals. Molecular Cancer Therapeutics, 2011, 10, 159-168.	4.1	78
172	Epidermal Growth Factor and c-Jun Act via a Common DNA Regulatory Element to Stimulate Transcription of the Ovine P-450 Cholesterol Side Chain Cleavage (CYP11A1) Promoter. Journal of Biological Chemistry, 1995, 270, 18301-18308.	3.4	77
173	Metabolic reprogramming and two-compartment tumor metabolism. Cell Cycle, 2012, 11, 3280-3289.	2.6	77
174	Biological functions of CDK5 and potential CDK5 targeted clinical treatments. Oncotarget, 2017, 8, 17373-17382.	1.8	77
175	Regulation of the Human Chorionic Gonadotropin α- and β-Subunit Promoters by AP-2. Journal of Biological Chemistry, 1997, 272, 15405-15412.	3.4	76
176	Clinical and translational implications of the caveolin gene family: lessons from mouse models and human genetic disorders. Laboratory Investigation, 2009, 89, 614-623.	3.7	76
177	Stromal and Epithelial Caveolin-1 Both Confer a Protective Effect Against Mammary Hyperplasia and Tumorigenesis. American Journal of Pathology, 2006, 169, 1784-1801.	3.8	75
178	Oncogenes and inflammation rewire host energy metabolism in the tumor microenvironment. Cell Cycle, 2013, 12, 2580-2597.	2.6	75
179	The Androgen Receptor Acetylation Site Regulates cAMP and AKT but Not ERK-induced Activity. Journal of Biological Chemistry, 2004, 279, 29436-29449.	3.4	74
180	The Cell Fate Determination Factor Dachshund Inhibits Androgen Receptor Signaling and Prostate Cancer Cellular Growth. Cancer Research, 2009, 69, 3347-3355.	0.9	74

#	Article	IF	CITATIONS
181	Cell Fate Determination Factor Dachshund Reprograms Breast Cancer Stem Cell Function. Journal of Biological Chemistry, 2011, 286, 2132-2142.	3.4	74
182	Myocardial Expression of Endothelin-1 in Murine Trypanosoma cruzi Infection. Cardiovascular Pathology, 2000, 9, 257-265.	1.6	73
183	Loss of Caveolin-1 Causes the Hyper-Proliferation of Intestinal Crypt Stem Cells, with Increased Sensitivity to Whole Body ?-Radiation. Cell Cycle, 2005, 4, 1817-1825.	2.6	73
184	Caveolin-1 (P132L), a Common Breast Cancer Mutation, Confers Mammary Cell Invasiveness and Defines a Novel Stem Cell/Metastasis-Associated Gene Signature. American Journal of Pathology, 2009, 174, 1650-1662.	3.8	73
185	Cyclin-dependent kinase inhibitors: novel anticancer agents. Expert Opinion on Investigational Drugs, 2000, 9, 1849-1870.	4.1	72
186	Spatially Discrete, Light-Driven Protein Expression. Chemistry and Biology, 2002, 9, 1347-1353.	6.0	72
187	Metastasis-Associated Protein 2 Is a Repressor of Estrogen Receptor α Whose Overexpression Leads to Estrogen-Independent Growth of Human Breast Cancer Cells. Molecular Endocrinology, 2006, 20, 2020-2035.	3.7	72
188	Interferonâ€Î² activates multiple signaling cascades in primary human microglia. Journal of Neurochemistry, 2002, 81, 1361-1371.	3.9	71
189	Bone Morphogenetic Protein Signaling Regulates Postnatal Hair Follicle Differentiation and Cycling. American Journal of Pathology, 2004, 165, 729-740.	3.8	69
190	Caveolin-1-Deficient Mice Have An Increased Mammary Stem Cell Population with Upregulation of Wnt/?-Catenin Signaling. Cell Cycle, 2005, 4, 1808-1816.	2.6	69
191	Matrix remodeling stimulates stromal autophagy, "fueling―cancer cell mitochondrial metabolism and metastasis. Cell Cycle, 2011, 10, 2021-2034.	2.6	69
192	Menatetrenone, a Vitamin K2 Analogue, Inhibits Hepatocellular Carcinoma Cell Growth by Suppressing Cyclin D1 Expression through Inhibition of Nuclear Factor κB Activation. Clinical Cancer Research, 2007, 13, 2236-2245.	7.0	68
193	Cell Fate Factor DACH1 Represses YB-1–Mediated Oncogenic Transcription and Translation. Cancer Research, 2014, 74, 829-839.	0.9	68
194	Examining the role of cyclin D1 in breast cancer. Future Oncology, 2011, 7, 753-765.	2.4	67
195	Protein Kinase Cl̂´ Inhibition of S-Phase Transition in Capillary Endothelial Cells Involves the Cyclin-dependent Kinase Inhibitor p27Kip1. Journal of Biological Chemistry, 1999, 274, 20805-20811.	3.4	66
196	Combined Loss of INK4a and Caveolin-1 Synergistically Enhances Cell Proliferation and Oncogene-induced Tumorigenesis. Journal of Biological Chemistry, 2004, 279, 24745-24756.	3.4	66
197	Caveolin-1 Deficiency (â^'/â^') Conveys Premalignant Alterations in Mammary Epithelia, with Abnormal Lumen Formation, Growth Factor Independence, and Cell Invasiveness. American Journal of Pathology, 2006, 168, 292-309.	3.8	66
198	Trypanosoma cruzi Infection Activates Extracellular Signal-Regulated Kinase in Cultured Endothelial and Smooth Muscle Cells. Infection and Immunity, 2004, 72, 5274-5282.	2.2	65

#	Article	IF	CITATIONS
199	CAV1 Inhibits Metastatic Potential in Melanomas through Suppression of the Integrin/Src/FAK Signaling Pathway. Cancer Research, 2010, 70, 7489-7499.	0.9	65
200	The Dachshund gene in development and hormone-responsive tumorigenesis. Trends in Endocrinology and Metabolism, 2010, 21, 41-49.	7.1	65
201	Disruption of a <i>Sirt1</i> -Dependent Autophagy Checkpoint in the Prostate Results in Prostatic Intraepithelial Neoplasia Lesion Formation. Cancer Research, 2011, 71, 964-975.	0.9	65
202	Protein Kinase C Isoforms Involved in the Transcriptional Activation of Cyclin D1 by Transforming Ha-Ras. Journal of Biological Chemistry, 2001, 276, 42834-42842.	3.4	64
203	Towards a new "stromal-based―classification system for human breast cancer prognosis and therapy. Cell Cycle, 2009, 8, 1654-1658.	2.6	64
204	SIRT1 Modulates Aggregation and Toxicity through Deacetylation of the Androgen Receptor in Cell Models of SBMA. Journal of Neuroscience, 2011, 31, 17425-17436.	3.6	64
205	The CCL5/CCR5 axis promotes metastasis in basal breast cancer. Oncolmmunology, 2013, 2, e23660.	4.6	64
206	Dietary Restriction: Standing Up for Sirtuins. Science, 2010, 329, 1012-1013.	12.6	63
207	miR-221/222 Promotes S-Phase Entry and Cellular Migration in Control of Basal-Like Breast Cancer. Molecules, 2014, 19, 7122-7137.	3.8	63
208	Regulation of Cyclin D1Expression and DNA Synthesis by Phosphatidylinositol 3-Kinase in Airway Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 2000, 23, 436-443.	2.9	62
209	Dual Mechanisms for Lysophosphatidic Acid Stimulation of Human Ovarian Carcinoma Cells. Journal of the National Cancer Institute, 2003, 95, 733-740.	6.3	62
210	AND-34/BCAR3, a GDP exchange factor whose overexpression confers antiestrogen resistance, activates Rac, PAK1, and the cyclin D1 promoter. Cancer Research, 2003, 63, 6802-8.	0.9	62
211	The Cell Fate Determination Factor DACH1 Is Expressed in Estrogen Receptor-α–Positive Breast Cancer and Represses Estrogen Receptor-α Signaling. Cancer Research, 2009, 69, 5752-5760.	0.9	61
212	Mechanisms for Helicobacter pylori CagA-induced cyclin D1 expression that affect cell cycle. Cellular Microbiology, 2006, 8, 1740-1752.	2.1	59
213	Cyclin D1 Determines Estrogen Signaling in the Mammary Gland In Vivo. Molecular Endocrinology, 2013, 27, 1415-1428.	3.7	59
214	Differential effects of p21(WAF1/CIP1) deficiency on MMTV-ras and MMTV-myc mammary tumor properties. Cancer Research, 2002, 62, 2077-84.	0.9	59
215	Caveolin-1, Mammary Stem Cells, and Estrogen-Dependent Breast Cancers: Figure 1 Cancer Research, 2006, 66, 10647-10651.	0.9	58
216	Attenuation of Forkhead signaling by the retinal determination factor DACH1. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6864-6869.	7.1	58

#	Article	IF	CITATIONS
217	CCR5 Receptor Antagonists Block Metastasis to Bone of v-Src Oncogene–Transformed Metastatic Prostate Cancer Cell Lines. Cancer Research, 2014, 74, 7103-7114.	0.9	58
218	EglN2 associates with the <scp>NRF</scp> 1â€ <scp>PGC</scp> 1α complex and controls mitochondrial function in breastÂcancer. EMBO Journal, 2015, 34, 2953-2970.	7.8	58
219	Trop-2 is up-regulated in invasive prostate cancer and displaces FAK from focal contacts. Oncotarget, 2015, 6, 14318-14328.	1.8	58
220	Recent advances in inducible expression in transgenic mice. Seminars in Cell and Developmental Biology, 2002, 13, 129-141.	5.0	57
221	Genetic Ablation of Caveolin-1 Drives Estrogen-Hypersensitivity and the Development of DCIS-Like Mammary Lesions. American Journal of Pathology, 2009, 174, 1172-1190.	3.8	57
222	Is cancer a metabolic rebellion against host aging? In the quest for immortality, tumor cells try to save themselves by boosting mitochondrial metabolism. Cell Cycle, 2012, 11, 253-263.	2.6	57
223	A critical evaluation of transsphenoidal pituitary surgery in the treatment of Cushing's disease: Prediction of outcome. European Journal of Endocrinology, 1990, 123, 423-430.	3.7	56
224	Caveolin in breast cancer. Cancer Biology and Therapy, 2004, 3, 931-941.	3.4	55
225	Acetylation and nuclear receptor action. Journal of Steroid Biochemistry and Molecular Biology, 2011, 123, 91-100.	2.5	55
226	Dachshund Binds p53 to Block the Growth of Lung Adenocarcinoma Cells. Cancer Research, 2013, 73, 3262-3274.	0.9	55
227	Targeting tumor-initiating cells: Eliminating anabolic cancer stem cells with inhibitors of protein synthesis or by mimicking caloric restriction. Oncotarget, 2015, 6, 4585-4601.	1.8	55
228	Sustained mammary glandâ€directed, ponasterone Aâ€inducible expression in transgenic mice. FASEB Journal, 2000, 14, 877-884.	0.5	54
229	miRNAs regulate stem cell self-renewal and differentiation. Frontiers in Genetics, 2012, 3, 191.	2.3	53
230	Cyclin D1 silencing suppresses tumorigenicity, impairs DNA double strand break repair and thus radiosensitizes androgen-independent prostate cancer cells to DNA damage. Oncotarget, 2016, 7, 5383-5400.	1.8	53
231	Activator Protein-2 Mediates Transcriptional Activation of the CYP11A1 Gene by Interaction with Sp1 Rather than Binding to DNA. Molecular Endocrinology, 1999, 13, 1402-1416.	3.7	52
232	Alternate Cyclin D1 mRNA Splicing Modulates p27KIP1 Binding and Cell Migration. Journal of Biological Chemistry, 2008, 283, 7007-7015.	3.4	52
233	Evidence That Myc Isoforms Transcriptionally Repress Caveolin-1 Gene Expression via an INR-Dependent Mechanismâ€. Biochemistry, 2001, 40, 3354-3362.	2.5	51
234	Senescence and epigenetic dysregulation in cancer. International Journal of Biochemistry and Cell Biology, 2002, 34, 1475-1490.	2.8	51

#	Article	IF	CITATIONS
235	Loss of Sirt1 Promotes Prostatic Intraepithelial Neoplasia, Reduces Mitophagy, and Delays Park2 Translocation to Mitochondria. American Journal of Pathology, 2015, 185, 266-279.	3.8	51
236	Adrenocorticotropin Induction of Stress-activated Protein Kinase in the Adrenal Cortex in Vivo. Journal of Biological Chemistry, 1997, 272, 20063-20069.	3.4	50
237	Notch1-Induced Transformation of RKE-1 Cells Requires Up-regulation of Cyclin D1. Cancer Research, 2006, 66, 7562-7570.	0.9	50
238	ARC (apoptosis repressor with caspase recruitment domain) is a novel marker of human colon cancer. Cell Cycle, 2008, 7, 1640-1647.	2.6	50
239	Caveolin-1 promotes pancreatic cancer cell differentiation and restores membranous E-cadherin via suppression of the epithelial-mesenchymal transition. Cell Cycle, 2011, 10, 3692-3700.	2.6	49
240	Transcriptome-wide association analysis identifies DACH1 as a kidney disease risk gene that contributes to fibrosis. Journal of Clinical Investigation, 2021, 131, .	8.2	49
241	Cytokine CCL5 and receptor CCR5 axis in glioblastoma multiforme. Radiology and Oncology, 2019, 53, 397-406.	1.7	49
242	Amino Acids Regulate Hepatocyte Proliferation through Modulation of Cyclin D1 Expression. Journal of Biological Chemistry, 2003, 278, 25853-25858.	3.4	48
243	Small RNA zippers lock miRNA molecules and block miRNA function in mammalian cells. Nature Communications, 2017, 8, 13964.	12.8	48
244	Dissecting the roles of Â-catenin and cyclin D1 during mammary development and neoplasia. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11400-11405.	7.1	47
245	Sirtuins, nuclear hormone receptor acetylation and transcriptional regulation. Trends in Endocrinology and Metabolism, 2007, 18, 356-364.	7.1	47
246	Bioinformatics analysis reveals transcriptome and microRNA signatures and drug repositioning targets for IBD and other autoimmune diseases. Inflammatory Bowel Diseases, 2012, 18, 2315-2333.	1.9	47
247	Nutrient Restriction and Radiation Therapy for Cancer Treatment: When Less Is More. Oncologist, 2013, 18, 97-103.	3.7	47
248	Altered expression of DACH1 and cyclin D1 in endometrial cancer. Cancer Biology and Therapy, 2009, 8, 1534-1539.	3.4	46
249	Acetylation in hormone signaling and the cell cycle. Cytokine and Growth Factor Reviews, 2002, 13, 259-276.	7.2	45
250	Nuclear Factor-κB Enhances ErbB2-Induced Mammary Tumorigenesis and Neoangiogenesis in Vivo. American Journal of Pathology, 2009, 174, 1910-1920.	3.8	45
251	Caveolin-1 is a negative regulator of tumor growth in glioblastoma and modulates chemosensitivity to temozolomide. Cell Cycle, 2013, 12, 1510-1520.	2.6	45
252	Hepatocyte DACH1 Is Increased in Obesity via Nuclear Exclusion of HDAC4 and Promotes Hepatic Insulin Resistance. Cell Reports, 2016, 15, 2214-2225.	6.4	45

#	Article	IF	CITATIONS
253	Cyclin D1 Restrains Oncogene-Induced Autophagy by Regulating the AMPK–LKB1 Signaling Axis. Cancer Research, 2017, 77, 3391-3405.	0.9	45
254	Bombesin Regulates Cyclin D1 Expression through the Early Growth Response Protein Egr-1 in Prostate Cancer Cells. Cancer Research, 2005, 65, 9934-9942.	0.9	44
255	ErbB2 Induces Notch1 Activity and Function in Breast Cancer Cells. Clinical and Translational Science, 2008, 1, 107-115.	3.1	44
256	Nerve Growth Factor Regulation of Cyclin D1 in PC12 Cells through a p21 ^{RAS} Extracellular Signal-regulated Kinase Pathway Requires Cooperative Interactions between Sp1 and Nuclear Factor-κB. Molecular Biology of the Cell, 2008, 19, 2566-2578.	2.1	44
257	Activating Peroxisome Proliferator-Activated Receptor Î ³ Mutant Promotes Tumor Growth <i>In vivo</i> by Enhancing Angiogenesis. Cancer Research, 2009, 69, 9236-9244.	0.9	44
258	Identification of a <i>Cyclin D1</i> Network in Prostate Cancer That Antagonizes Epithelial–Mesenchymal Restraint. Cancer Research, 2014, 74, 508-519.	0.9	44
259	Flavopiridol and trastuzumab synergistically inhibit proliferation of breast cancer cells: association with selective cooperative inhibition of cyclin D1-dependent kinase and Akt signaling pathways. Molecular Cancer Therapeutics, 2002, 1, 695-706.	4.1	44
260	Nucleolar localization of the microtubule-associated protein tau in neuroblastomas using sense and anti-sense transfection strategies. , 1997, 38, 100-110.		43
261	Kinase-independent role of cyclin D1 in chromosomal instability and mammary tumorigenesis. Oncotarget, 2015, 6, 8525-8538.	1.8	43
262	Metabolic remodeling of the tumor microenvironment: Migration stimulating factor (MSF) reprograms myofibroblasts toward lactate production, fueling anabolic tumor growth. Cell Cycle, 2012, 11, 3403-3414.	2.6	42
263	CCR5-Mediated Signaling is Involved in Invasion of Glioblastoma Cells in Its Microenvironment. International Journal of Molecular Sciences, 2020, 21, 4199.	4.1	42
264	5â€azacitidine restores and amplifies the bicalutamide response on preclinical models of androgen receptor expressing or deficient prostate tumors. Prostate, 2010, 70, 1166-1178.	2.3	41
265	PACSIN 2 represses cellular migration through direct association with cyclin D1 but not its alternate splice form cyclin D1b. Cell Cycle, 2011, 10, 73-81.	2.6	41
266	piRNA-823 Is Involved in Cancer Stem Cell Regulation Through Altering DNA Methylation in Association With Luminal Breast Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 641052.	3.7	41
267	Dissecting tumor metabolic heterogeneity: Telomerase and large cell size metabolically define a sub-population of stem-like, mitochondrial-rich, cancer cells. Oncotarget, 2015, 6, 21892-21905.	1.8	41
268	BIOCHEMICAL AND HORMONAL CHANGES DURING A 1000 km ULTRAMARATHON. Clinical and Experimental Pharmacology and Physiology, 1989, 16, 353-361.	1.9	40
269	Prolactin Negatively Regulates Caveolin-1 Gene Expression in the Mammary Gland during Lactation, via a Ras-dependent Mechanism. Journal of Biological Chemistry, 2001, 276, 48389-48397.	3.4	40
270	Disruption of BRCA1 LXCXE motif alters BRCA1 functional activity and regulation of RB family but not RB protein binding. Oncogene, 2001, 20, 4827-4841.	5.9	40

#	Article	IF	CITATIONS
271	Nuclear receptor modifications and endocrine cell proliferation. Journal of Steroid Biochemistry and Molecular Biology, 2003, 85, 133-138.	2.5	40
272	Reverse Warburg Effect in a Patient With Aggressive B-Cell Lymphoma: Is Lactic Acidosis a Paraneoplastic Syndrome?. Seminars in Oncology, 2013, 40, 403-418.	2.2	40
273	Regulation of Airway Smooth Muscle Cyclin D ₁ Transcription by Protein Kinase C-δ. American Journal of Respiratory Cell and Molecular Biology, 2002, 27, 204-213.	2.9	39
274	p27Kip1 Repression of ErbB2-Induced Mammary Tumor Growth in Transgenic Mice Involves Skp2 and Wnt/β-Catenin Signaling. Cancer Research, 2006, 66, 8529-8541.	0.9	39
275	Cyclin D1 Promotes Androgen-Dependent DNA Damage Repair in Prostate Cancer Cells. Cancer Research, 2016, 76, 329-338.	0.9	39
276	Trypanosoma cruzi Infection Induces Proliferation of Vascular Smooth Muscle Cells. Infection and Immunity, 2006, 74, 152-159.	2.2	38
277	Multiple pituitary hormone gradients from inferior petrosal sinus sampling in Cushing's disease. European Journal of Endocrinology, 1988, 119, 75-80.	3.7	37
278	Forskolin Inhibits Cyclin D1Expression in Cultured Airway Smooth-Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 1999, 20, 352-358.	2.9	37
279	The Inhibitor of Cyclin-Dependent Kinase 4a/Alternative Reading Frame (INK4a/ARF) Locus Encoded Proteins p16INK4a and p19ARF Repress Cyclin D1 Transcription through Distinct cis Elements. Cancer Research, 2004, 64, 4122-4130.	0.9	37
280	Multiple promoter elements in the human chorionic gonadotropin β subunit genes distinguish their expression from the luteinizing hormone β gene. Molecular and Cellular Endocrinology, 1994, 106, 111-119.	3.2	36
281	Differential effects of 16α-hydroxyestrone and 2-methoxyestradiol on cyclin D1 involving the transcription factor ATF-2 in MCF-7 breast cancer cells. Journal of Molecular Endocrinology, 2005, 34, 91-105.	2.5	36
282	ErbB-2 Induces the Cyclin D1 Gene in Prostate Epithelial Cells In vitro and In vivo. Cancer Research, 2007, 67, 4364-4372.	0.9	36
283	The induction of the p53 tumor suppressor protein bridges the apoptotic and autophagic signaling pathways to regulate cell death in prostate cancer cells. Oncotarget, 2014, 5, 10678-10691.	1.8	36
284	Regulation of cyclin dependent kinase inhibitor proteins during neonatal cerebella development. Developmental Brain Research, 1998, 108, 77-87.	1.7	35
285	The metastatic potential of triple-negative breast cancer is decreased via caloric restriction-mediated reduction of the miR-17–92 cluster. Breast Cancer Research and Treatment, 2014, 146, 41-50.	2.5	35
286	Cytochalasin B-induced membrane vesicles convey angiogenic activity of parental cells. Oncotarget, 2017, 8, 70496-70507.	1.8	35
287	Epigenetics and the Estrogen Receptor. Annals of the New York Academy of Sciences, 2006, 1089, 73-87.	3.8	34
288	3-Phosphoinositide-Dependent Protein Kinase-1 Activates the Peroxisome Proliferator-Activated Receptor-Î ³ and Promotes Adipocyte Differentiation. Molecular Endocrinology, 2006, 20, 268-278.	3.7	34

17

#	Article	IF	CITATIONS
289	Somatic Excision Demonstrates that c-Jun Induces Cellular Migration and Invasion through Induction of Stem Cell Factor. Molecular and Cellular Biology, 2007, 27, 1356-1369.	2.3	34
290	The Endogenous Cell-Fate Factor Dachshund Restrains Prostate Epithelial Cell Migration via Repression of Cytokine Secretion via a CXCL Signaling Module. Cancer Research, 2015, 75, 1992-2004.	0.9	34
291	Acetylation-defective mutants of Pparγ are associated with decreased lipid synthesis in breast cancer cells. Oncotarget, 2014, 5, 7303-7315.	1.8	34
292	The retinal determination gene network: from developmental regulator to cancer therapeutic target. Oncotarget, 2016, 7, 50755-50765.	1.8	34
293	Downregulation of Cyclin D1 Alters cdk 4- and cdk 2-Specific Phosphorylation of Retinoblastoma Protein. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 2000, 3, 352-359.	1.6	33
294	ErbB-2-induced mammary tumor growth: the role of cyclin D1 and p27Kip1. Biochemical Pharmacology, 2002, 64, 827-836.	4.4	33
295	Acetylation in Nuclear Receptor Signaling and the Role of Sirtuins. Molecular Endocrinology, 2008, 22, 539-545.	3.7	33
296	The application of a lentiviral vector for gene transfer in fetal human hepatocytes. Journal of Gene Medicine, 2000, 2, 186-193.	2.8	32
297	Compartment-specific activation of PPARÎ ³ governs breast cancer tumor growth, via metabolic reprogramming and symbiosis. Cell Cycle, 2013, 12, 1360-1370.	2.6	32
298	miR-17/20 sensitization of breast cancer cells to chemotherapy-induced apoptosis requires <i>Akt1</i> . Oncotarget, 2014, 5, 1083-1090.	1.8	32
299	Cyclin D1 Integrates Estrogen-Mediated DNA Damage Repair Signaling. Cancer Research, 2014, 74, 3959-3970.	0.9	32
300	DACH1 suppresses breast cancer as a negative regulator of CD44. Scientific Reports, 2017, 7, 4361.	3.3	32
301	Stromal cyclin D1 promotes heterotypic immune signaling and breast cancer growth. Oncotarget, 2017, 8, 81754-81775.	1.8	32
302	Role of BRCA1 in heat shock response. Oncogene, 2003, 22, 10-27.	5.9	31
303	Hormone-induced DNA damage response and repair mediated by cyclin D1 in breast and prostate cancer. Oncotarget, 2017, 8, 81803-81812.	1.8	31
304	Positherapy: targeted nuclear therapy of breast cancer with 18F-2-deoxy-2-fluoro-D-glucose. Cancer Research, 2005, 65, 698-702.	0.9	31
305	The effect of tumor necrosis factor- \hat{I}_{\pm} and cAMP on induction of AP-1 activity in MA-10 tumor leydig cells. Endocrine, 1997, 6, 317-324.	2.3	30
306	Breast Cancer Cell Proliferation Is Inhibited by BAD. Journal of Biological Chemistry, 2007, 282, 28864-28873.	3.4	30

#	Article	IF	CITATIONS
307	Transcription Elongation Regulator 1 Is a Co-integrator of the Cell Fate Determination Factor Dachshund Homolog 1. Journal of Biological Chemistry, 2010, 285, 40342-40350.	3.4	30
308	Leronlimab, a humanized monoclonal antibody to CCR5, blocks breast cancer cellular metastasis and enhances cell death induced by DNA damaging chemotherapy. Breast Cancer Research, 2021, 23, 11.	5.0	30
309	Cyclin D1 Induces Chromosomal Instability. Oncotarget, 2012, 3, 224-225.	1.8	30
310	Ras Inactivation of the Retinoblastoma Pathway by Distinct Mechanisms in NIH 3T3 Fibroblast and RIE-1 Epithelial Cells. Journal of Biological Chemistry, 2000, 275, 40916-40924.	3.4	28
311	BRCA1 in hormone-responsive cancers. Trends in Endocrinology and Metabolism, 2003, 14, 378-385.	7.1	28
312	Disruption of c-Jun Reduces Cellular Migration and Invasion through Inhibition of c-Src and Hyperactivation of ROCK II Kinase. Molecular Biology of the Cell, 2008, 19, 1378-1390.	2.1	28
313	Acetylation of the Cell-Fate Factor Dachshund Determines p53 Binding and Signaling Modules in Breast Cancer. Oncotarget, 2013, 4, 923-935.	1.8	27
314	Genetic ablation of caveolin-1 in mammary epithelial cells increases milk production and hyper-activates STAT5a signaling. Cancer Biology and Therapy, 2006, 5, 292-297.	3.4	26
315	Cav1 Suppresses Tumor Growth and Metastasis in a Murine Model of Cutaneous SCC through Modulation of MAPK/AP-1 Activation. American Journal of Pathology, 2013, 182, 992-1004.	3.8	26
316	Sirt1-Deficient Mice Have Hypogonadotropic Hypogonadism due to Defective GnRH Neuronal Migration. Molecular Endocrinology, 2015, 29, 200-212.	3.7	26
317	Cyclin D1-mediated microRNA expression signature predicts breast cancer outcome. Theranostics, 2018, 8, 2251-2263.	10.0	26
318	The role of Ink4a/Arf in ErbB2 mammary gland tumorigenesis. Cancer Research, 2003, 63, 3395-402.	0.9	26
319	Peroxisome Proliferator-activated Receptor Î ³ Activation Modulates Cyclin D1 Transcription via Î ² -Catenin-independent and cAMP-response Element-binding Protein-dependent Pathways in Mouse Hepatocytes. Journal of Biological Chemistry, 2004, 279, 16927-16938.	3.4	25
320	Inhibition of cyclin D1 gene transcription by Brg-1. Cell Cycle, 2008, 7, 647-655.	2.6	25
321	Novel Oncogene–Induced Metastatic Prostate Cancer Cell Lines Define Human Prostate Cancer Progression Signatures. Cancer Research, 2013, 73, 978-989.	0.9	25
322	BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion. Experimental Cell Research, 2015, 331, 1-10.	2.6	25
323	Double homozygous missense mutations in DACH1 and BMP4 in a patient with bilateral cystic renal dysplasia. Nephrology Dialysis Transplantation, 2013, 28, 227-232.	0.7	24
324	CAPER, a novel regulator of human breast cancer progression. Cell Cycle, 2014, 13, 1256-1264.	2.6	24

#	Article	IF	CITATIONS
325	Impaired glucose tolerance after endurance exercise is associated with reduced insulin secretion rather than altered insulin sensitivity. Metabolism: Clinical and Experimental, 1993, 42, 277-282.	3.4	23
326	Ras regulation of cyclin D1 promoter. Methods in Enzymology, 2001, 333, 116-127.	1.0	23
327	A direct quantification method for measuring plasma MicroRNAs identified potential biomarkers for detecting metastatic breast cancer. Oncotarget, 2016, 7, 21865-21874.	1.8	23
328	An ATF6-tPA pathway in hepatocytes contributes to systemic fibrinolysis and is repressed by DACH1. Blood, 2019, 133, 743-753.	1.4	23
329	Reduced Cyclin D1 Expression in the Cerebella of Nutritionally Deprived Rats Correlates with Developmental Delay and Decreased Cellular DNA Synthesis. Journal of Neuropathology and Experimental Neurology, 1996, 55, 1009-1020.	1.7	22
330	v-Src Oncogene Induces Trop2 Proteolytic Activation via Cyclin D1. Cancer Research, 2016, 76, 6723-6734.	0.9	22
331	Breast Cancer Stem Cell Isolation. Methods in Molecular Biology, 2016, 1406, 121-135.	0.9	22
332	Recent advances with cyclin-dependent kinase inhibitors: therapeutic agents for breast cancer and their role in immuno-oncology. Expert Review of Anticancer Therapy, 2019, 19, 569-587.	2.4	21
333	Hearts lacking caveolin-1 develop hypertrophy with normal cardiac substrate metabolism. Cell Cycle, 2008, 7, 2509-2518.	2.6	20
334	Loss of Caveolin-3 Induces a Lactogenic Microenvironment that Is Protective Against Mammary Tumor Formation. American Journal of Pathology, 2009, 174, 613-629.	3.8	20
335	Genetic Ablation of Cav1 Differentially Affects Melanoma Tumor Growth and Metastasis in Mice: Role of Cav1 in Shh Heterotypic Signaling and Transendothelial Migration. Cancer Research, 2012, 72, 2262-2274.	0.9	20
336	Cyclin D1 integrates G9a-mediated histone methylation. Oncogene, 2019, 38, 4232-4249.	5.9	20
337	Mayven induces c-Jun expression and cyclin D1 activation in breast cancer cells. Oncogene, 2005, 24, 2398-2409.	5.9	19
338	Construction of a novel DNA decoy that inhibits the oncogenic β-catenin/T-cell factor pathway. Molecular Cancer Therapeutics, 2006, 5, 985-994.	4.1	19
339	Familial acromegaly. European Journal of Endocrinology, 1989, 121, 286-289.	3.7	18
340	Imaging Spontaneous MMTVneu Transgenic Murine Mammary Tumors: Targeting Metabolic Activity Versus Genetic Products. Journal of Nuclear Medicine, 2010, 51, 106-111.	5.0	18
341	Small Non-coding RNAs Govern Mammary Gland Tumorigenesis. Journal of Mammary Gland Biology and Neoplasia, 2012, 17, 59-64.	2.7	17
342	Long and noncoding RNAs (Inc-RNAs) determine androgen receptor dependent gene expression in prostate cancer growth in vivo. Asian Journal of Andrology, 2014, 16, 268.	1.6	17

#	Article	IF	CITATIONS
343	Mechanisms Governing Metabolic Heterogeneity in Breast Cancer and Other Tumors. Frontiers in Oncology, 2021, 11, 700629.	2.8	17
344	Cell Cycle Regulatory Proteins in the Liver in Murine Trypanosoma cruzi Infection. Cell Cycle, 2006, 5, 2396-2400.	2.6	16
345	The membrane-associated form of cyclin D1 enhances cellular invasion. Oncogenesis, 2020, 9, 83.	4.9	16
346	15d-PGJ2 inhibits oxidized LDL-induced macrophage proliferation by inhibition of GM-CSF production via inactivation of NF-lºB. Biochemical and Biophysical Research Communications, 2004, 314, 817-823.	2.1	15
347	Using Caveolin-1 epithelial immunostaining patterns to stratify human breast cancer patients and to predict the Caveolin-1 (P132L) mutation. Cell Cycle, 2009, 8, 1396-1401.	2.6	15
348	Caveolin-1 regulates the anti-atherogenic properties of macrophages. Cell and Tissue Research, 2014, 358, 821-831.	2.9	15
349	The G protein coupled receptor CCR5 in cancer. Advances in Cancer Research, 2020, 145, 29-47.	5.0	15
350	Kinase independent oncogenic cyclin D1. Aging, 2015, 7, 455-456.	3.1	15
351	Growth hormone excess and galactorrhoea without acromegalic features. Case reports. BJOG: an International Journal of Obstetrics and Gynaecology, 1991, 98, 92-97.	2.3	13
352	Antisense to Cyclin D1 Inhibits VEGF-Stimulated Growth of Vascular Endothelial Cells: Implication of Tumor Vascularization: Fig. 1 Clinical Cancer Research, 2006, 12, 4459-4462.	7.0	13
353	Stabilization of SMAR1 mRNA by PGA2 involves a stem–loop structure in the 5′ UTR. Nucleic Acids Research, 2007, 35, 6004-6016.	14.5	13
354	Selective cytotoxicity of synthesized procyanidin 3-O-Galloylepicatechin-4b,8-3-O-galloylcatechin to human cancer cells. Cell Cycle, 2008, 7, 1648-1657.	2.6	13
355	Regulation of host cell cyclin D1 by <i>Trypanosoma cruzi</i> in myoblasts. Cell Cycle, 2008, 7, 500-503.	2.6	13
356	Cancer stem cells and the cell cycle: targeting the drive behind breast cancer. Expert Review of Anticancer Therapy, 2009, 9, 275-279.	2.4	13
357	Dietary n-3 polyunsaturated fatty acids fail to reduce prostate tumorigenesis in the PB-ErbB-2 x Pten ^{+/-} preclinical mouse model. Cell Cycle, 2010, 9, 1824-1829.	2.6	13
358	Cyclin D1 promotes secretion of pro-oncogenic immuno-miRNAs and piRNAs. Clinical Science, 2020, 134, 791-805.	4.3	13
359	MicroRNA-Mediated Cancer Metastasis Regulation via Heterotypic Signals in the Microenvironment. Current Pharmaceutical Biotechnology, 2014, 15, 455-458.	1.6	13
360	Ral GTPases Contribute to Regulation of Cyclin D1 through Activation of NF-κB. Molecular and Cellular Biology, 2000, 20, 8084-8092.	2.3	13

#	Article	IF	CITATIONS
361	DACH1 negatively regulates the human RANK ligand gene expression in stromal/preosteoblast cells. Journal of Cellular Biochemistry, 2008, 103, 1747-1759.	2.6	12
362	Single-Cell Transcription Site Activation Predicts Chemotherapy Response in Human Colorectal Tumors. Cancer Research, 2008, 68, 4977-4982.	0.9	12
363	Mechanisms for Progenitor Cell-Mediated Repair for Ischemic Heart Injury. Current Stem Cell Research and Therapy, 2012, 7, 2-14.	1.3	12
364	The dialyzable leukocyte extract TransferonTM inhibits tumor growth and brain metastasis in a murine model of prostate cancer. Biomedicine and Pharmacotherapy, 2018, 101, 938-944.	5.6	12
365	Stromal glycolysis and MCT4 are hallmarks of DCIS progression to invasive breast cancer. Cell Cycle, 2013, 12, 2935-2936.	2.6	11
366	Role of UHRF1 in malignancy and its function as a therapeutic target for molecular docking towards the SRA domain. International Journal of Biochemistry and Cell Biology, 2019, 114, 105558.	2.8	11
367	Immunohistochemical examination of the INK4 and Cip inhibitors in the rat neonatal cerebellum: cellular localization and the impact of protein calorie malnutrition. Brain Research, 2000, 855, 11-22.	2.2	10
368	Dachshund Depletion Disrupts Mammary Gland Development and Diverts the Composition of the Mammary Gland Progenitor Pool. Stem Cell Reports, 2019, 12, 135-151.	4.8	10
369	Antibiotics for cancer therapy. Oncotarget, 2015, 6, 2587-2588.	1.8	10
370	The type 1 insulin-like growth factor receptor and resistance to DACH1. Cell Cycle, 2011, 10, 1956-1959.	2.6	9
371	Dual fluorescent molecular substrates selectively report the activation, sustainability and reversibility of cellular PKB/Akt activity. Scientific Reports, 2013, 3, 1697.	3.3	9
372	Endogenous Cyclin D1 Promotes the Rate of Onset and Magnitude of Mitogenic Signaling via Akt1 Ser473 Phosphorylation. Cell Reports, 2020, 32, 108151.	6.4	9
373	Phosphodiesterase Type-5 Inhibitor Tadalafil Modulates Steroid Hormones Signaling in a Prostate Cancer Cell Line. International Journal of Molecular Sciences, 2021, 22, 754.	4.1	8
374	An Update on Glioblastoma Biology, Genetics, and Current Therapies: Novel Inhibitors of the G Protein-Coupled Receptor CCR5. International Journal of Molecular Sciences, 2021, 22, 4464.	4.1	8
375	Endogenous Dach1 in cancer. Oncoscience, 2015, 2, 803-804.	2.2	7
376	c-Jun is required for TGF-β-mediated cellular migration via nuclear Ca2+ signaling. International Journal of Biochemistry and Cell Biology, 2011, 43, 1104-1113.	2.8	6
377	The Application of High Density Microarray for Analysis of Mitogenic Signaling and Cell-Cycle in the Adrenal. Endocrine Research, 2000, 26, 807-823.	1.2	5
378	Mammary Gland Selective Excision of <i>c-Jun</i> Identifies Its Role in mRNA Splicing. Cancer Research, 2012, 72, 1023-1034.	0.9	5

#	Article	IF	CITATIONS
379	MAT1 correlates with molecular subtypes and predicts poor survival in breast cancer. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2018, 30, 351-363.	2.2	5
380	PparÎ ³ 1 Facilitates ErbB2-Mammary Adenocarcinoma in Mice. Cancers, 2021, 13, 2171.	3.7	5
381	A study of cytotoxic synergy of UCN-01 and flavopiridol in syngeneic pair of cell lines. Investigational New Drugs, 2005, 23, 299-309.	2.6	4
382	Remembering team science is for the patients. Cancer Biology and Therapy, 2006, 5, 449-452.	3.4	2
383	Time-Lapse Video Microscopy for Assessment of EYFP-Parkin Aggregation as a Marker for Cellular Mitophagy. Journal of Visualized Experiments, 2016, , .	0.3	2
384	Mitochondrial mass and DNA repair in breast cancer stem cells. Oncotarget, 2015, 6, 38442-38443.	1.8	2
385	Assays for the Spectrum of Circulating Tumor Cells. Methods in Molecular Biology, 2022, 2429, 533-545.	0.9	2
386	Ras regulation of cyclin-dependent immunoprecipitation kinase assays. Methods in Enzymology, 2001, 333, 127-138.	1.0	1
387	Myelodysplastic Syndrome. American Journal of Cancer, 2002, 1, 301-311.	0.4	1
388	Ras inactivation of the retinoblastoma pathway by distinct mechanisms in NIH 3T3 fibroblast and RIE-1 epithelial cells Journal of Biological Chemistry, 2001, 276, 11446.	3.4	1
389	A functional analysis of angiotensin II targets through genome wide surveys. American Journal of Hypertension, 2001, 14, A147-A148.	2.0	0
390	138. The Cell Fate Determination Factor DACH1 Represses Estrogen Receptor-Alpha Activity by Binding to the Transcription Regulator PELP1. Journal of Surgical Research, 2008, 144, 236-237.	1.6	0
391	Screening of SirT1 activating compounds and their cytotoxicity in prostate cancer cell lines Journal of Clinical Oncology, 2012, 30, e13545-e13545.	1.6	0