John Airey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8733773/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Swimming against the Tide: Five Assumptions about Physics Teacher Education Sustained by the Culture of Physics Departments. Journal of Science Teacher Education, 2021, 32, 934-951.	2.5	10
2	On the periphery of university physics: trainee physics teachers' experiences of learning undergraduate physics. European Journal of Physics, 2021, 42, 055702.	0.6	4
3	A Fragmented Training Environment: Discourse Models in the Talk of Physics Teacher Educators. Research in Science Education, 2020, 50, 2559-2585.	2.3	8
4	What makes a good physics teacher? Views from the English stakeholder community. Physics Education, 2020, 55, 015017.	0.5	7
5	Developing representational competence: linking real-world motion to physics concepts through graphs. Learning: Research and Practice, 2020, 6, 88-107.	0.4	13
6	Learning to use Cartesian coordinate systems to solve physics problems: the case of â€~movability'. European Journal of Physics, 2020, 41, 045701.	0.6	10
7	The content lecturer and English-medium instruction (EMI): epilogue to the special issue on EMI in higher education. International Journal of Bilingual Education and Bilingualism, 2020, 23, 340-346.	2.1	32
8	Transduction and Science Learning: Multimodality in the Physics Laboratory. Designs for Learning, 2019, 11, 16-29.	0.8	22
9	Unpacking the Hertzsprung-Russell Diagram: A Social Semiotic Analysis of the Disciplinary and Pedagogical Affordances of a Central Resource in Astronomy. Designs for Learning, 2019, 11, 99-107.	0.8	15
10	Bilingual Scientific Literacy? The Use of English in Swedish University Science Courses. Nordic Journal of English Studies, 2019, 7, 145.	0.3	36
11	Increasing Access to Science and Engineering—the Role of Multimodality. Designs for Learning, 2019, 11, 138-140.	0.8	0
12	What Does It Mean to Understand a Physics Equation? A Study of Undergraduate Answers in Three Countries. Contributions From Science Education Research, 2019, , 225-239.	0.5	1
13	Developing Students' Disciplinary Literacy? The Case of University Physics. , 2018, , 357-376.		10
14	The expansion of English-medium instruction in the Nordic countries: Can top-down university language policies encourage bottom-up disciplinary literacy goals?. Higher Education, 2017, 73, 561-576.	4.4	104
15	Social Semiotics in University Physics Education. Models and Modeling in Science Education, 2017, , 95-122.	0.6	32
16	A social semiotic approach to identifying critical aspects. International Journal for Lesson and Learning Studies, 2015, 4, 302-316.	0.9	22
17	Enhancing the possibilities for learning: variation of disciplinary-relevant aspects in physics representations. European Journal of Physics, 2015, 36, 055001.	0.6	24
18	Towards addressing transient learning challenges in undergraduate physics: an example from electrostatics. European Journal of Physics, 2015, 36, 055002.	0.6	8

John Airey

#	Article	IF	CITATIONS
19	Fostering Disciplinary Literacy? South African Physics Lecturers' Educational Responses to their Students' Lack of Representational Competence. African Journal of Research in Mathematics, Science and Technology Education, 2014, 18, 242-252.	1.0	21
20	Who Needs 3D When the Universe Is Flat?. Science Education, 2014, 98, 412-442.	3.0	29
21	Disciplinary differences in the use of English in higher education: reflections on recent language policy developments. Higher Education, 2014, 67, 533-549.	4.4	164
22	Unpacking physics representations: Towards an appreciation of disciplinary affordance. Physical Review Physics Education Research, 2014, 10, .	1.7	45
23	Introducing the anatomy of disciplinary discernment: an example from astronomy. European Journal of Science and Mathematics Education, 2014, 2, 167-182.	1.1	24
24	Exploring the role of physics representations: an illustrative example from students sharing knowledge about refraction. European Journal of Physics, 2012, 33, 657-666.	0.6	77
25	"l don't teach language― AILA Review, 2012, 25, 64-79.	0.5	172
26	An exploration of university physics students' epistemological mindsets towards the understanding of physics equations. Nordic Studies in Science Education, 2012, 3, 15-28.	0.2	24
27	Lecturing undergraduate science in Danish and in English: A comparison of speaking rate and rhetorical style. English for Specific Purposes, 2011, 30, 209-221.	2.8	52
28	The Disciplinary Literacy Discussion Matrix: A Heuristic Tool for Initiating Collaboaration in Higher Education. Across the Disciplines, 2011, 8, 19-9.	0.1	50
29	A disciplinary discourse perspective on university science learning: Achieving fluency in a critical constellation of modes. Journal of Research in Science Teaching, 2009, 46, 27-49.	3.3	216
30	Language and the experience of learning university physics in Sweden. European Journal of Physics, 2006, 27, 553-560.	0.6	124
31	Physics students learning about abstract mathematical tools when engaging with $\hat{a}\in\hat{c}$ invisible $\hat{a}\in\hat{c}$ phenomena. , 0, , .		4