
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8733391/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Model-based evaluation of alternative reactive class closure strategies against COVID-19. Nature Communications, 2022, 13, 322.	5.8	17
2	Investigating vaccine-induced immunity and its effect in mitigating SARS-CoV-2 epidemics in China. BMC Medicine, 2022, 20, 37.	2.3	10
3	Mortality Associated With Influenza and Respiratory Syncytial Virus in the US, 1999-2018. JAMA Network Open, 2022, 5, e220527.	2.8	81
4	SARS-CoV-2 incidence, transmission, and reinfection in a rural and an urban setting: results of the PHIRST-C cohort study, South Africa, 2020–21. Lancet Infectious Diseases, The, 2022, 22, 821-834.	4.6	74
5	SARS-CoV-2 transmission, persistence of immunity, and estimates of Omicron's impact in South African population cohorts. Science Translational Medicine, 2022, 14, .	5.8	36
6	Case Fatality Risk of the First Pandemic Wave of Coronavirus Disease 2019 (COVID-19) in China. Clinical Infectious Diseases, 2021, 73, e79-e85.	2.9	50
7	Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2. Science, 2021, 371, .	6.0	341
8	Healthâ€seeking behaviors of patients with acute respiratory infections during the outbreak of novel coronavirus disease 2019 in Wuhan, China. Influenza and Other Respiratory Viruses, 2021, 15, 188-194.	1.5	14
9	Who should be prioritized for COVID-19 vaccination in China? A descriptive study. BMC Medicine, 2021, 19, 45.	2.3	56
10	Infectivity, susceptibility, and risk factors associated with SARS-CoV-2 transmission under intensive contact tracing in Hunan, China. Nature Communications, 2021, 12, 1533.	5.8	117
11	Modeling of Future COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Rates and Nonpharmaceutical Intervention Scenarios — United States, April–September 2021. Morbidity and Mortality Weekly Report, 2021, 70, 719-724.	9.0	126
12	The impact of relaxing interventions on human contact patterns and SARS-CoV-2 transmission in China. Science Advances, 2021, 7, .	4.7	53
13	Serological evidence of human infection with SARS-CoV-2: a systematic review and meta-analysis. The Lancet Clobal Health, 2021, 9, e598-e609.	2.9	193
14	Toward the use of neural networks for influenza prediction at multiple spatial resolutions. Science Advances, 2021, 7, .	4.7	21
15	Strategic testing approaches for targeted disease monitoring can be used to inform pandemic decision-making. PLoS Biology, 2021, 19, e3001307.	2.6	9
16	Despite vaccination, China needs non-pharmaceutical interventions to prevent widespread outbreaks of COVID-19 in 2021. Nature Human Behaviour, 2021, 5, 1009-1020.	6.2	81
17	A comprehensive look at the COVID-19 pandemic death toll. ELife, 2021, 10, .	2.8	32
18	Cryptic transmission of SARS-CoV-2 and the first COVID-19 wave. Nature, 2021, 600, 127-132.	13.7	61

#	Article	IF	CITATIONS
19	Recommended reporting items for epidemic forecasting and prediction research: The EPIFORGE 2020 guidelines. PLoS Medicine, 2021, 18, e1003793.	3.9	42
20	Synergistic interventions to control COVID-19: Mass testing and isolation mitigates reliance on distancing. PLoS Computational Biology, 2021, 17, e1009518.	1.5	8
21	Potential Role of Social Distancing in Mitigating Spread of Coronavirus Disease, South Korea. Emerging Infectious Diseases, 2020, 26, 2697-2700.	2.0	42
22	Identification and evaluation of epidemic prediction and forecasting reporting guidelines: A systematic review and a call for action. Epidemics, 2020, 33, 100400.	1.5	10
23	Spatial dynamics and the basic reproduction number of the 1991–1997 Cholera epidemic in Peru. PLoS Neglected Tropical Diseases, 2020, 14, e0008045.	1.3	9
24	Disease burden and clinical severity of the first pandemic wave of COVID-19 in Wuhan, China. Nature Communications, 2020, 11, 5411.	5.8	84
25	Beyond clinical trials: Evolutionary and epidemiological considerations for development of a universal influenza vaccine. PLoS Pathogens, 2020, 16, e1008583.	2.1	22
26	Real-time estimation of disease activity in emerging outbreaks using internet search information. PLoS Computational Biology, 2020, 16, e1008117.	1.5	13
27	Clobal, regional, and national estimates of target population sizes for covid-19 vaccination: descriptive study. BMJ, The, 2020, 371, m4704.	3.0	140
28	The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science, 2020, 368, 395-400.	6.0	2,784
29	Estimation of Excess Deaths Associated With the COVID-19 Pandemic in the United States, March to May 2020. JAMA Internal Medicine, 2020, 180, 1336.	2.6	374
30	Early epidemiological analysis of the coronavirus disease 2019 outbreak based on crowdsourced data: a population-level observational study. The Lancet Digital Health, 2020, 2, e201-e208.	5.9	406
31	Coordinating the realâ€ŧime use of global influenza activity data for better public health planning. Influenza and Other Respiratory Viruses, 2020, 14, 105-110.	1.5	4
32	Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. Science, 2020, 368, 1481-1486.	6.0	942
33	Impact of contact tracing on SARS-CoV-2 transmission. Lancet Infectious Diseases, The, 2020, 20, 876-877.	4.6	50
34	Evolving epidemiology and transmission dynamics of coronavirus disease 2019 outside Hubei province, China: a descriptive and modelling study. Lancet Infectious Diseases, The, 2020, 20, 793-802.	4.6	541
35	Fitbit-informed influenza forecasts. The Lancet Digital Health, 2020, 2, e54-e55.	5.9	11
36	Real-time estimation of disease activity in emerging outbreaks using internet search information. , 2020. 16. e1008117.		0

#	Article	IF	CITATIONS
37	Real-time estimation of disease activity in emerging outbreaks using internet search information. , 2020, 16, e1008117.		Ο
38	Real-time estimation of disease activity in emerging outbreaks using internet search information. , 2020, 16, e1008117.		0
39	Real-time estimation of disease activity in emerging outbreaks using internet search information. , 2020, 16, e1008117.		0
40	Real-time estimation of disease activity in emerging outbreaks using internet search information. , 2020, 16, e1008117.		0
41	Real-time estimation of disease activity in emerging outbreaks using internet search information. , 2020, 16, e1008117.		0
42	Global circulation of respiratory viruses: from local observations to global predictions. The Lancet Global Health, 2019, 7, e982-e983.	2.9	7
43	Levels of outpatient prescribing for four major antibiotic classes and rates of septicemia hospitalization in adults in different US states - a statistical analysis. BMC Public Health, 2019, 19, 1138.	1.2	3
44	A systematic review and evaluation of Zika virus forecasting and prediction research during a public health emergency of international concern. PLoS Neglected Tropical Diseases, 2019, 13, e0007451.	1.3	31
45	Population-level mathematical modeling of antimicrobial resistance: a systematic review. BMC Medicine, 2019, 17, 81.	2.3	52
46	Antimicrobial resistance prevalence, rates of hospitalization with septicemia and rates of mortality with sepsis in adults in different US states. International Journal of Antimicrobial Agents, 2019, 54, 23-34.	1.1	35
47	The future of influenza forecasts. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2802-2804.	3.3	55
48	Childhood immune imprinting to influenza A shapes birth year-specific risk during seasonal H1N1 and H3N2 epidemics. PLoS Pathogens, 2019, 15, e1008109.	2.1	95
49	Hospitalizations Associated with Respiratory Syncytial Virus and Influenza in Children, Including Children Diagnosed with Asthma. Epidemiology, 2019, 30, 918-926.	1.2	18
50	Epidemic dynamics of respiratory syncytial virus in current and future climates. Nature Communications, 2019, 10, 5512.	5.8	78
51	Fogarty International Center collaborative networks in infectious disease modeling: Lessons learnt in research and capacity building. Epidemics, 2019, 26, 116-127.	1.5	16
52	Excess mortality patterns during 1918–1921 influenza pandemic in the state of Arizona, USA. Annals of Epidemiology, 2018, 28, 273-280.	0.9	29
53	On the Relative Role of Different Age Groups During Epidemics Associated With Respiratory Syncytial Virus. Journal of Infectious Diseases, 2018, 217, 238-244.	1.9	34
54	The RAPIDD ebola forecasting challenge: Synthesis and lessons learnt. Epidemics, 2018, 22, 13-21.	1.5	185

#	Article	IF	CITATIONS
55	Using phenomenological models for forecasting the 2015 Ebola challenge. Epidemics, 2018, 22, 62-70.	1.5	129
56	Application of the CDC EbolaResponse Modeling tool to disease predictions. Epidemics, 2018, 22, 22-28.	1.5	8
57	The RAPIDD Ebola forecasting challenge special issue: Preface. Epidemics, 2018, 22, 1-2.	1.5	7
58	Urbanization and humidity shape the intensity of influenza epidemics in U.S. cities. Science, 2018, 362, 75-79.	6.0	272
59	The 1918 Influenza Pandemic: Looking Back, Looking Forward. American Journal of Epidemiology, 2018, 187, 2493-2497.	1.6	19
60	Deploying digital health data to optimize influenza surveillance at national and local scales. PLoS Computational Biology, 2018, 14, e1006020.	1.5	29
61	Perspectives on model forecasts of the 2014–2015 Ebola epidemic in West Africa: lessons and the way forward. BMC Medicine, 2017, 15, 42.	2.3	63
62	Quantifying the fitness of antiviral-resistant influenza strains. Lancet Infectious Diseases, The, 2017, 17, 250-251.	4.6	0
63	Asymptomatic Transmission and the Dynamics of Zika Infection. Scientific Reports, 2017, 7, 5829.	1.6	47
64	Evaluating Google Flu Trends in Latin America: Important Lessons for the Next Phase of Digital Disease Detection. Clinical Infectious Diseases, 2017, 64, 34-41.	2.9	88
65	Human mobility and the spatial transmission of influenza in the United States. PLoS Computational Biology, 2017, 13, e1005382.	1.5	174
66	A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks. Epidemics, 2016, 15, 27-37.	1.5	237
67	Is it growing exponentially fast? – Impact of assuming exponential growth for characterizing and forecasting epidemics with initial near-exponential growth dynamics. Infectious Disease Modelling, 2016, 1, 71-78.	1.2	29
68	Pandemic influenza and socioeconomic disparities: Lessons from 1918 Chicago. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13557-13559.	3.3	16
69	Early sub-exponential epidemic growth: Simple models, nonlinear incidence rates, and additional mechanisms. Physics of Life Reviews, 2016, 18, 114-117.	1.5	2
70	Mathematical models to characterize early epidemic growth: A review. Physics of Life Reviews, 2016, 18, 66-97.	1.5	297
71	First flu is forever. Science, 2016, 354, 706-707.	6.0	33
72	Elucidating Transmission Patterns From Internet Reports: Ebola and Middle East Respiratory Syndrome as Case Studies. Journal of Infectious Diseases, 2016, 214, S421-S426.	1.9	20

#	Article	IF	CITATIONS
73	Infectious Disease Surveillance in the Big Data Era: Towards Faster and Locally Relevant Systems. Journal of Infectious Diseases, 2016, 214, S380-S385.	1.9	109
74	Characterizing the reproduction number of epidemics with early subexponential growth dynamics. Journal of the Royal Society Interface, 2016, 13, 20160659.	1.5	101
75	Timing and periodicity of influenza epidemics. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12899-12901.	3.3	22
76	Mortality and transmissibility patterns of the 1957 influenza pandemic in Maricopa County, Arizona. BMC Infectious Diseases, 2016, 16, 405.	1.3	14
77	Global Mortality Impact of the 1957–1959 Influenza Pandemic. Journal of Infectious Diseases, 2016, 213, 738-745.	1.9	166
78	Characterizing Ebola Transmission Patterns Based on Internet News Reports. Clinical Infectious Diseases, 2016, 62, 24-31.	2.9	40
79	Using Phenomenological Models to Characterize Transmissibility and Forecast Patterns and Final Burden of Zika Epidemics. PLOS Currents, 2016, 8, .	1.4	123
80	The role of influenza in the epidemiology of pneumonia. Scientific Reports, 2015, 5, 15314.	1.6	38
81	Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study. BMC Medicine, 2015, 13, 210.	2.3	384
82	Detecting signals of seasonal influenza severity through age dynamics. BMC Infectious Diseases, 2015, 15, 587.	1.3	15
83	Controlling Ebola: key role of Ebola treatment centres. Lancet Infectious Diseases, The, 2015, 15, 139-141.	4.6	7
84	Modeling infectious disease dynamics in the complex landscape of global health. Science, 2015, 347, aaa4339.	6.0	492
85	Reduced-Dose Schedule of Prophylaxis Based on Local Data Provides Near-Optimal Protection Against Respiratory Syncytial Virus. Clinical Infectious Diseases, 2015, 61, 506-514.	2.9	20
86	Ebola vaccine trials: a race against the clock. Lancet Infectious Diseases, The, 2015, 15, 624-626.	4.6	9
87	Association between Respiratory Syncytial Virus Activity and Pneumococcal Disease in Infants: A Time Series Analysis of US Hospitalization Data. PLoS Medicine, 2015, 12, e1001776.	3.9	143
88	Intense Seasonal A/H1N1 Influenza in Mexico, Winter 2013–2014. Archives of Medical Research, 2015, 46, 63-70.	1.5	14
89	Global migration of influenza A viruses in swine. Nature Communications, 2015, 6, 6696.	5.8	128
90	The Western Africa Ebola Virus Disease Epidemic Exhibits Both Global Exponential and Local Polynomial Growth Rates. PLOS Currents, 2015, 7, .	1.4	84

#	Article	IF	CITATIONS
91	Demonstrating the Use of High-Volume Electronic Medical Claims Data to Monitor Local and Regional Influenza Activity in the US. PLoS ONE, 2014, 9, e102429.	1.1	59
92	Synthesizing data and models for the spread of MERS-CoV, 2013: Key role of index cases and hospital transmission. Epidemics, 2014, 9, 40-51.	1.5	110
93	Spatial Transmission of 2009 Pandemic Influenza in the US. PLoS Computational Biology, 2014, 10, e1003635.	1.5	139
94	Reply to Wilson et al. Journal of Infectious Diseases, 2014, 210, 995-997.	1.9	0
95	Increasing similarity in the dynamics of influenza in two adjacent subtropical Chinese cities following the relaxation of border restrictions. Journal of General Virology, 2014, 95, 531-538.	1.3	13
96	Hand, foot, and mouth disease in China, 2008–12: an epidemiological study. Lancet Infectious Diseases, The, 2014, 14, 308-318.	4.6	755
97	Substantial Morbidity and Mortality Associated with Pandemic A/H1N1 Influenza in Mexico, Winter 2013-2014: Gradual Age Shift and Severity. PLOS Currents, 2014, 6, .	1.4	27
98	Is West Africa Approaching a Catastrophic Phase or is the 2014 Ebola Epidemic Slowing Down? Different Models Yield Different Answers for Liberia. PLOS Currents, 2014, 6, .	1.4	62
99	The Association of Meningococcal Disease with Influenza in the United States, 1989–2009. PLoS ONE, 2014, 9, e107486.	1.1	45
100	Transmission potential of influenza A/H7N9, February to May 2013, China. BMC Medicine, 2013, 11, 214.	2.3	44
101	Mortality burden of the 2009â€10 influenza pandemic in the <scp>U</scp> nited <scp>S</scp> tates: improving the timeliness of influenza severity estimates using inpatient mortality records. Influenza and Other Respiratory Viruses, 2013, 7, 863-871.	1.5	35
102	Timely estimates of influenza A H7N9 infection severity. Lancet, The, 2013, 382, 106-108.	6.3	6
103	Environmental Predictors of Seasonal Influenza Epidemics across Temperate and Tropical Climates. PLoS Pathogens, 2013, 9, e1003194.	2.1	416
104	Reassessing Google Flu Trends Data for Detection of Seasonal and Pandemic Influenza: A Comparative Epidemiological Study at Three Geographic Scales. PLoS Computational Biology, 2013, 9, e1003256.	1.5	273
105	Contrasting the epidemiological and evolutionary dynamics of influenza spatial transmission. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120199.	1.8	38
106	Latitudinal Variations in Seasonal Activity of Influenza and Respiratory Syncytial Virus (RSV): A Global Comparative Review. PLoS ONE, 2013, 8, e54445.	1.1	317
107	Impact of cross-protective vaccines on epidemiological and evolutionary dynamics of influenza. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3173-3177.	3.3	60
108	Improving the Estimation of Influenza-Related Mortality Over a Seasonal Baseline. Epidemiology, 2012, 23, 829-838.	1.2	140

#	Article	IF	CITATIONS
109	Reply to Mamelund. Journal of Infectious Diseases, 2012, 206, 141-143.	1.9	3
110	Global mortality of 2009 pandemic influenza A H1N1. Lancet Infectious Diseases, The, 2012, 12, 651-653.	4.6	61
111	Searching for Sharp Drops in the Incidence of Pandemic A/H1N1 Influenza by Single Year of Age. PLoS ONE, 2012, 7, e42328.	1.1	32
112	Does seasonal influenza vaccination increase the risk of illness with the 2009 A/H1N1 pandemic virus?. International Journal of Risk and Safety in Medicine, 2011, 23, 97-102.	0.3	2
113	Characterizing the Epidemiology of the 2009 Influenza A/H1N1 Pandemic in Mexico. PLoS Medicine, 2011, 8, e1000436.	3.9	200
114	Influenza-Related Mortality Trends in Japanese and American Seniors: Evidence for the Indirect Mortality Benefits of Vaccinating Schoolchildren. PLoS ONE, 2011, 6, e26282.	1.1	48
115	Does Seasonal Influenza Vaccination Increase the Risk of Illness with the 2009 A/H1N1 Pandemic Virus?. PLoS Medicine, 2010, 7, e1000259.	3.9	28
116	Evaluation of Southern Hemisphere influenza vaccine recommendations. Vaccine, 2010, 28, 2693-2699.	1.7	26
117	Preliminary Estimates of Mortality and Years of Life Lost Associated with the 2009 A/H1N1 Pandemic in the US and Comparison with Past Influenza Seasons. PLOS Currents, 2010, 2, RRN1153.	1.4	177
118	Influenza seasonality: Lifting the fog. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3645-3646.	3.3	197
119	The origin and global emergence of adamantane resistant A/H3N2 influenza viruses. Virology, 2009, 388, 270-278.	1.1	96
120	Health Benefits of Universal Influenza Vaccination Strategy. PLoS Medicine, 2008, 5, e216.	3.9	10
121	The Genesis and Spread of Reassortment Human Influenza A/H3N2 Viruses Conferring Adamantane Resistance. Molecular Biology and Evolution, 2007, 24, 1811-1820.	3.5	174
122	Transmissibility and mortality impact of epidemic and pandemic influenza, with emphasis on the unusually deadly 1951 epidemic. Vaccine, 2006, 24, 6701-6707.	1.7	102
123	1951 Influenza Epidemic, England and Wales, Canada, and the United States. Emerging Infectious Diseases, 2006, 12, 661-668.	2.0	42
124	Synchrony, Waves, and Spatial Hierarchies in the Spread of Influenza. Science, 2006, 312, 447-451.	6.0	726
125	Air Travel and the Spread of Influenza: Important Caveats. PLoS Medicine, 2006, 3, e503.	3.9	48
126	Mortality due to Influenza in the United States—An Annualized Regression Approach Using Multiple-Cause Mortality Data. American Journal of Epidemiology, 2006, 163, 181-187.	1.6	230

#	Article	IF	CITATIONS
127	Influenza in Tropical Regions. PLoS Medicine, 2006, 3, e89.	3.9	363
128	Impact of Influenza Vaccination on Seasonal Mortality in the US Elderly Population. Archives of Internal Medicine, 2005, 165, 265.	4.3	457
129	Multinational Impact of the 1968 Hong Kong Influenza Pandemic: Evidence for a Smoldering Pandemic. Journal of Infectious Diseases, 2005, 192, 233-248.	1.9	194
130	Influenza Epidemics in the United States, France, and Australia, 1972–19971. Emerging Infectious Diseases, 2004, 10, 32-39.	2.0	121
131	Association of influenza epidemics with global climate variability. European Journal of Epidemiology, 2004, 19, 1055-1059.	2.5	81
132	Risk factors of influenza transmission in households. International Congress Series, 2004, 1263, 291-294.	0.2	97
133	Risk factors of influenza transmission in households. British Journal of General Practice, 2004, 54, 684-9.	0.7	241
134	Prediction of the Spread of Influenza Epidemics by the Method of Analogues. American Journal of Epidemiology, 2003, 158, 996-1006.	1.6	107
135	Projected resurgence of COVID-19 in the United States in July—December 2021 resulting from the increased transmissibility of the Delta variant and faltering vaccination. ELife. 0. 11	2.8	22