J Wilson White

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/8732811/publications.pdf
Version: 2024-02-01


```
1 Ecologists should not use statistical significance tests to interpret simulation model results. Oikos,
2014, 123, 385-388. 2014, 123, 385-388.
```

Beyond connectivity: how empirical methods can quantify population persistence to improve marine protectedâ€area design. Ecological Applications, 2014, 24, 257-270.
3.8

184
2
2.7

301

Functional responses and scaling in predator-prey interactions of marine fishes: contemporary issues
6.4

129 and emerging concepts. Ecology Letters, 2011, 14, 1288-1299.

The utility and limitations of size and spacing guidelines for designing marine protected area (MPA) networks. Biological Conservation, 2011, 144, 306-318.
4.1

98

Transcriptomic changes underlie altered egg protein production and reduced fecundity in an
Transcriptomic changes underlie altered egg protein production and reduced fecundity
estuarine model fish exposed to bifenthrin. Aquatic Toxicology, 2016, 174, 247-260.
4.0

80

Linking models with monitoring data for assessing performance of noâ€take marine reserves. Frontiers
6 in Ecology and the Environment, 2011, 9, 390-399.
4.0

69
而

Transient responses of fished populations to marine reserve establishment. Conservation Letters,
$7 \quad$ Transient $2013,6,180-191$.
5.7

67

8 Synthesizing mechanisms of density dependence in reef fishes: behavior, habitat configuration, and observational scale. Ecology, 2010, 91, 1949-1961.
$3.2 \quad 66$

9 Decision analysis for designing marine protected areas for multiple species with uncertain fishery status. Ecological Applications, 2010, 20, 1523-1541.

Setting expected timelines of fished population recovery for the adaptive management of a marine
$10 \quad$ protected area network. Ecological Applications, 2019, 29, e01949.
3.8

57
$10 \quad$ protected area network. Ecological Applications, 2019, 29, e01949.
11 Marine Population Connectivity: Reconciling Large-Scale Dispersal and High Self-Retention. American
Naturalist, 2015, 185, 196-211.
$10 \quad \begin{aligned} & \text { protected area network. Ecological Applications, 2019, 29, e01949. } \\ & 11 \text { Marine Population Connectivity: Reconciling Large-Scale Dispersal and High Self-Retention. American } \\ & \text { Naturalist, 2015, 185, 196-211. }\end{aligned}$
2.1

53

12 Behavioral mechanisms underlie an ant-plant mutualism. Oecologia, 2003, 135, 51-59.
2.0

52

13 Marine Protected Area Networks in California, USA. Advances in Marine Biology, 2014, 69, 205-251.
1.4

52

14 The Value of Larval Connectivity Information in the Static Optimization of Marine Reserve Design.
5.7

52
Conservation Letters, 2014, 7, 533-544.

Planktonic larval mortality rates are lower than widely expected. Ecology, 2014, 95, 3344-3353.
3.2

50

A comparison of approaches used for economic analysis in marine protected area network planning in California. Ocean and Coastal Management, 2013, 74, 77-89.

\#	Article	IF	Citations
19	Multigenerational and Transgenerational Effects of Environmentally Relevant Concentrations of Endocrine Disruptors in an Estuarine Fish Model. Environmental Science \& Technology, 2020, 54, 13849-13860.	10.0	45
20	SAFETY IN NUMBERS AND THE SPATIAL SCALING OF DENSITY-DEPENDENT MORTALITY IN A CORAL REEF FISH. Ecology, 2007, 88, 3044-3054.	3.2	43
21	Spatially correlated recruitment of a marine predator and its prey shapes the largeâ€scale pattern of densityâ€dependent prey mortality. Ecology Letters, 2007, 10, 1054-1065.	6.4	42
22	SCALEâ€ĐEPENDENT CHANGES IN THE IMPORTANCE OF LARVAL SUPPLY AND HABITAT TO ABUNDANCE OF A REEF FISH. Ecology, 2008, 89, 1323-1333.	3.2	40
23	Importance of age structure in models of the response of upper trophic levels to fishing and climate change. ICES Journal of Marine Science, 2011, 68, 1270-1283.	2.5	36
24	From â $€^{\sim}$ Omics to Otoliths: Responses of an Estuarine Fish to Endocrine Disrupting Compounds across Biological Scales. PLoS ONE, 2013, 8, e74251.	2.5	36
25	Local and regional stressors interact to drive a salinizationâ€induced outbreak of predators on oyster reefs. Ecosphere, 2017, 8, e01992.	2.2	34
26	Connectivity, Dispersal, and Recruitment: Connecting Benthic Communities and the Coastal Ocean. Oceanography, 2019, 32, 50-59.	1.0	34
27	Scaling Up Endocrine Disruption Effects from Individuals to Populations: Outcomes Depend on How Many Males a Population Needs. Environmental Science \& Technology, 2017, 51, 1802-1810.	10.0	30
28	Nonconsumptive effects of a predator weaken then rebound over time. Ecology, 2017, 98, 656-667.	3.2	28
29	Endocrine Disrupting Compounds Alter Risk-Taking Behavior in Guppies (<i>Poecilia reticulata</i>). Ethology, 2015, 121, 480-491.	1.1	27
30	MARKOV CHAIN MONTE CARLO METHODS FOR ASSIGNING LARVAE TO NATAL SITES USING NATURAL GEOCHEMICAL TAGS. Ecological Applications, 2008, 18, 1901-1913.	3.8	26
31	Oceanographic coupling across three trophic levels shapes sourceâ€"sink dynamics in marine metacommunities. Oikos, 2011, 120, 1151-1164.	2.7	24
32	Behavior of the Galapagos fishing fleet and its consequences for the design of spatial management alternatives for the red spiny lobster fishery. Ocean and Coastal Management, 2013, 78, 88-100.	4.4	24
33	Predation on oysters is inhibited by intense or chronically mild, low salinity events. Limnology and Oceanography, 2019, 64, 81-92.	3.1	21
34	Spatially Coupled Larval Supply of Marine Predators and Their Prey Alters the Predictions of Metapopulation Models. American Naturalist, 2008, 171, E179-E194.	2.1	19
35	Adapting the steepness parameter from stockâ€"recruit curves for use in spatially explicit models. Fisheries Research, 2010, 102, 330-334.	1.7	19
36	Fitting stateâ€space integral projection models to sizeâ€structured time series data to estimate unknown parameters. Ecological Applications, 2016, 26, 2677-2694.	3.8	19

37 Marine reserve design theory for species with ontogenetic migration. Biology Letters, 2015, 11,
20140511.

Inverse approach to estimating larval dispersal reveals limited population connectivity along 700 km

Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130572.
43 Larval entrainment in cooling water intakes: spatially explicit models reveal effects on benthicLarval traits carry over to affect postâ€settlement behaviour in a common coral reef fish. Journal of

$$
\begin{align*}
& \text { Population models reveal unexpected patterns of local persistence despite widespread larval } \\
& \text { dispersal in a highly exploited species. Conservation Letters, 2018, 11, e12567. }
\end{align*}
$$

Application of diet theory reveals context-dependent foraging preferences in an herbivorous coral

Analysis of fish population size distributions confirms cessation of fishing in marine protected areas.

Projecting the timescale of initial increase in fishery yield after implementation of marine protected

Can inverse density dependence at small spatial scale
populations?. Theoretical Ecology, 2011, 4, 357-370.

The dynamics of open populations: integration of topâ€"down, bottomâ€"up and supplyâ€"side influences

Ecological Applications, 2020, 30, e02070.
55 Community Responses to Climate-Related Variability and Disease: The Critical Importance of Long-Term
Improving macroscopic maturity determination in a pre-spawning flatfish through predictive
modeling and whole mount methods. Fisheries Research, 2013, 147,359-369.

58 Experimental determination of the spatial scale of a prey patch from the predatorâ $€^{\mathrm{TM}} \mathrm{s}_{\text {perspective. }}$
Oecologia, 2014, 174, 723-729.
$2.0 \quad 8$

59 The Potential for Cryptic Population Structure to Sustain a Heavily Exploited Marine Flatfish Stock.
Marine and Coastal Fisheries, 2018, 10, 411-423.
1.4

Not all disturbances are created equal: disturbance magnitude affects predatorâ $€^{\prime \prime} p r e y ~ p o p u l a t i o n s$
more than disturbance frequency. Oikos, 2020, 129, 1-12.
$2.7 \quad 8$
61 Density-dependent prey mortality is determined by the spatial scale of predator foraging. Oecologia, 2016, 180, 305-311.

$2.0 \quad 6$

62 Persistence of a reef fish metapopulation via network connectivity: theory and data. Ecology Letters, 2021, 24, 1121-1132.
$6.4 \quad 6$

63 Empirical Approaches to Measure Connectivity. Oceanography, 2019, 32, 60-61.

Diminishing returns in habitat restoration by adding biogenic materials: a test using estuarine oysters and recycled oyster shell. Restoration Ecology, 2020, 28, 1633-1642.

> Environmental forcing and predator consumption outweigh the nonconsumptive effects of multiple predators on oyster reefs. Ecology, 2020, 101, e03041.
$3.2 \quad 5$
A GIS-Based Tool for Representing Larval Dispersal for Marine Reserve Selection. Professional Geographer, 2011, 63, 489-513.
1.8
4

Quantifying the statistical power of monitoring programs for marine protected areas. Ecological
3.8

4
Applications, 2021, 31, e2215.

Recruitment variability and sampling design interact to influence the detectability of protected area
3.8

4

Quantifying the Statistical Power of Monitoring Programs for Marine Protected Areas. Bulletin of the Ecological Society of America, 2021, 102, e01793.

