Matteo Valsecchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8732793/publications.pdf

Version: 2024-02-01

430874 434195 1,039 43 18 31 citations h-index g-index papers 43 43 43 926 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Human Microsaccade-Related Visual Brain Responses. Journal of Neuroscience, 2009, 29, 12321-12331.	3.6	153
2	Visual oddballs induce prolonged microsaccadic inhibition. Experimental Brain Research, 2007, 177, 196-208.	1.5	97
3	Microsaccadic responses in a bimodal oddball task. Psychological Research, 2009, 73, 23-33.	1.7	69
4	Attention makes moving objects be perceived to move faster. Vision Research, 2007, 47, 166-178.	1.4	67
5	A review of interactions between peripheral and foveal vision. Journal of Vision, 2020, 20, 2.	0.3	61
6	Optimal sampling of visual information for lightness judgments. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11163-11168.	7.1	60
7	Dynamic Re-calibration of Perceived Size in Fovea and Periphery through Predictable Size Changes. Current Biology, 2016, 26, 59-63.	3.9	41
8	Top-down influences on ambiguous perception: the role of stable and transient states of the observer. Frontiers in Human Neuroscience, 2014, 8, 979.	2.0	40
9	Perceived numerosity is reduced in peripheral vision. Journal of Vision, 2013, 13, 7-7.	0.3	37
10	Microsaccades distinguish between global and local visual processing. NeuroReport, 2007, 18, 1015-1018.	1.2	35
11	Microsaccadic response to visual events that are invisible to the superior colliculus Behavioral Neuroscience, 2007, 121, 786-793.	1.2	32
12	Lightness perception for matte and glossy complex shapes. Vision Research, 2017, 131, 82-95.	1.4	30
13	An evaluation of different measures of color saturation. Vision Research, 2018, 151, 117-134.	1.4	30
14	Attention is allocated closely ahead of the target during smooth pursuit eye movements: Evidence from EEG frequency tagging. Neuropsychologia, 2017, 102, 206-216.	1.6	26
15	Microsaccadic inhibition and P300 enhancement in a visual oddball task. Psychophysiology, 2009, 46, 635-644.	2.4	25
16	Selection of visual information for lightness judgements by eye movements. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130056.	4.0	24
17	Visual Working Memory Contents Bias Ambiguous Structure from Motion Perception. PLoS ONE, 2013, 8, e59217.	2.5	22
18	Prominent reflexive eye-movement orienting associated with deafness. Cognitive Neuroscience, 2012, 3, 8-13.	1.4	20

#	Article	IF	Citations
19	Role of motor execution in the ocular tracking of self-generated movements. Journal of Neurophysiology, 2016, 116, 2586-2593.	1.8	16
20	Foveal to peripheral extrapolation of brightness within objects. Journal of Vision, 2017, 17, 14.	0.3	15
21	Head movements modulate visual responsiveness in the absence of gaze shifts. NeuroReport, 2008, 19, 831-834.	1.2	14
22	Fast perception of binocular disparity Journal of Experimental Psychology: Human Perception and Performance, 2015, 41, 909-916.	0.9	14
23	LRP predicts smooth pursuit eye movement onset during the ocular tracking of self-generated movements. Journal of Neurophysiology, 2016, 116, 18-29.	1.8	14
24	Distractor filtering is affected by local and global distractor probability, emerges very rapidly but is resistant to extinction. Attention, Perception, and Psychophysics, 2021, 83, 2458-2472.	1.3	14
25	Enhanced brain responses to color during smooth-pursuit eye movements. Journal of Neurophysiology, 2017, 118, 749-754.	1.8	13
26	A comparison of the temporal and spatial properties of trans-saccadic perceptual recalibration and saccadic adaptation. Journal of Vision, 2020, 20, 2.	0.3	13
27	Differential effects of visual attention and working memory on binocular rivalry. Journal of Vision, 2014, 14, 13-13.	0.3	11
28	Lightness Discrimination Depends More on Bright Rather Than Shaded Regions of Three-Dimensional Objects. I-Perception, 2019, 10, 204166951988433.	1.4	8
29	The Role of Binocular Disparity in Rapid Scene and Pattern Recognition. I-Perception, 2013, 4, 122-136.	1.4	6
30	Saccadic suppression measured by steady-state visual evoked potentials. Journal of Neurophysiology, 2019, 122, 251-258.	1.8	6
31	Control of binocular gaze in a high-precision manual task. Vision Research, 2015, 110, 203-214.	1.4	5
32	On the Contribution of Binocular Disparity to the Long-Term Memory for Natural Scenes. PLoS ONE, 2012, 7, e49947.	2.5	5
33	Repulsive Serial Effects in Visual Numerosity Judgments. Perception, 2018, 47, 780-788.	1.2	4
34	Healthy aging is associated with decreased risk-taking in motor decision-making Journal of Experimental Psychology: Human Perception and Performance, 2018, 44, 154-167.	0.9	4
35	Habituation to abrupt-onset distractors with different spatial occurrence probability. Attention, Perception, and Psychophysics, 2023, 85, 649-666.	1.3	3
36	Dynamics of exploration in haptic search*., 2019,,.		2

#	Article	IF	CITATIONS
37	Microsaccades inhibition triggered by a repetitive visual distractor is not subject to habituation: Implications for the programming of reflexive saccades. Cortex, 2020, 131, 251-264.	2.4	1
38	Target search and inspection strategies in haptic search. IEEE Transactions on Haptics, 2021, PP, 1-1.	2.7	1
39	Impaired selection of a previously ignored singleton: Evidence for salience map plastic changes. Quarterly Journal of Experimental Psychology, 2022, 75, 1114-1120.	1.1	1
40	Screen size matches of familiar images are biased by canonical size, rather than showing a memory size effect. Psychological Research, 2021, 85, 246-258.	1.7	0
41	Aiming under risk in healthy aging. Journal of Vision, 2017, 17, 816.	0.3	O
42	Attention is allocated closely ahead of the target during smooth pursuit eye movements: evidence from EEG frequency tagging. Journal of Vision, 2017, 17, 1279.	0.3	0
43	Appearance of complex stimuli in the peripheral visual field. Journal of Vision, 2018, 18, 849.	0.3	0