André D Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8732628/publications.pdf

Version: 2024-02-01

72 papers 4,888 citations

71102 41 h-index 91884 69 g-index

75 all docs

75 docs citations

75 times ranked 8041 citing authors

#	Article	IF	CITATIONS
1	Identifying optimal photovoltaic technologies for underwater applications. IScience, 2022, 25, 104531.	4.1	5
2	CO2 doping of organic interlayers for perovskite solar cells. Nature, 2021, 594, 51-56.	27.8	120
3	A highly efficient perovskite photovoltaic-aqueous Li/Na-ion battery system. Energy Storage Materials, 2020, 24, 557-564.	18.0	26
4	Perovskite Solar Cells with Enhanced Fill Factors Using Polymer-Capped Solvent Annealing. ACS Applied Energy Materials, 2020, 3, 7231-7238.	5.1	19
5	Scalable, Highly Conductive, and Micropatternable MXene Films for Enhanced Electromagnetic Interference Shielding. Matter, 2020, 3, 546-557.	10.0	127
6	Layer-by-Layer Assembly of Two-Dimensional Materials: Meticulous Control on the Nanoscale. Matter, 2020, 2, 1148-1165.	10.0	106
7	Electrochemical-Osmotic Process for Simultaneous Recovery of Electric Energy, Water, and Metals from Wastewater. Environmental Science & Environmental	10.0	31
8	Weak polyelectrolyte-based multilayers via layer-by-layer assembly: Approaches, properties, and applications. Advances in Colloid and Interface Science, 2020, 282, 102200.	14.7	72
9	Efficiency Limits of Underwater Solar Cells. Joule, 2020, 4, 840-849.	24.0	47
10	High-throughput, combinatorial synthesis of multimetallic nanoclusters. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6316-6322.	7.1	119
11	A Promising Carbon/gâ€C ₃ N ₄ Composite Negative Electrode for a Longâ€Life Sodiumâ€lon Battery. Angewandte Chemie, 2019, 131, 13865-13871.	2.0	29
12	A Promising Carbon/g ₃ N ₄ Composite Negative Electrode for a Longâ€Life Sodiumâ€Ion Battery. Angewandte Chemie - International Edition, 2019, 58, 13727-13733.	13.8	70
13	Underwater Organic Solar Cells via Selective Removal of Electron Acceptors near the Top Electrode. ACS Energy Letters, 2019, 4, 1034-1041.	17.4	25
14	Metallic Glass Nanostructures: Recent Advances in Metallic Glass Nanostructures: Synthesis Strategies and Electrocatalytic Applications (Adv. Mater. 7/2019). Advanced Materials, 2019, 31, 1970050.	21.0	7
15	Mechanically strong and electrically conductive multilayer MXene nanocomposites. Nanoscale, 2019, 11, 20295-20300.	5.6	81
16	Recent Advances in Metallic Glass Nanostructures: Synthesis Strategies and Electrocatalytic Applications. Advanced Materials, 2019, 31, e1802120.	21.0	49
17	MXene Films, Coatings, and Bulk Processing. , 2019, , 197-219.		4
18	Binary Solvent Additives Treatment Boosts the Efficiency of PTB7:PCBM Polymer Solar Cells to Over 9.5%. Solar Rrl, 2018, 2, 1700144.	5.8	47

#	Article	IF	Citations
19	A highly efficient polymer non-fullerene organic solar cell enhanced by introducing a small molecule as a crystallizing-agent. Materials Today, 2018, 21, 79-87.	14.2	52
20	Three-Phase Morphology Evolution in Sequentially Solution-Processed Polymer Photodetector: Toward Low Dark Current and High Photodetectivity. ACS Applied Materials & Samp; Interfaces, 2018, 10, 3856-3864.	8.0	50
21	An additive dripping technique using diphenyl ether for tuning perovskite crystallization for high-efficiency solar cells. Nano Research, 2018, 11, 2648-2657.	10.4	11
22	Spray coating of the PCBM electron transport layer significantly improves the efficiency of p-i-n planar perovskite solar cells. Nanoscale, 2018, 10, 11342-11348.	5.6	76
23	Colorful Organic Solar Cells Employing Förster Resonance Energy Transfer Dye Molecule. , 2018, , .		0
24	High-Performance Capacitive Deionization via Manganese Oxide-Coated, Vertically Aligned Carbon Nanotubes. Environmental Science and Technology Letters, 2018, 5, 692-700.	8.7	69
25	Layerâ€byâ€Layer Assembly of Crossâ€Functional Semiâ€transparent MXeneâ€Carbon Nanotubes Composite Fili for Nextâ€Generation Electromagnetic Interference Shielding. Advanced Functional Materials, 2018, 28, 1803360.	ms 14.9	407
26	PEOz-PEDOT:PSS Composite Layer: A Route to Suppressed Hysteresis and Enhanced Open-Circuit Voltage in a Planar Perovskite Solar Cell. ACS Applied Materials & Interfaces, 2018, 10, 25329-25336.	8.0	19
27	Perovskite solar cells with a DMSO-treated PEDOT:PSS hole transport layer exhibit higher photovoltaic performance and enhanced durability. Nanoscale, 2017, 9, 4236-4243.	5.6	135
28	Exploring a wider range of Mg–Ca–Zn metallic glass as biocompatible alloys using combinatorial sputtering. Chemical Communications, 2017, 53, 8288-8291.	4.1	27
29	Colorful polymer solar cells employing an energy transfer dye molecule. Nano Energy, 2017, 38, 36-42.	16.0	34
30	Structurally Deformed MoS ₂ for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction. Advanced Materials, 2017, 29, 1703863.	21.0	107
31	A Cytop Insulating Tunneling Layer for Efficient Perovskite Solar Cells. Small Methods, 2017, 1, 1700244.	8.6	42
32	Increased mobility and on/off ratio in organic field-effect transistors using low-cost guanine-pentacene multilayers. Applied Physics Letters, 2017, 111, .	3.3	13
33	Bioinspired Dimensional Transition: Structurally Deformed MoS ₂ for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction (Adv. Mater. 44/2017). Advanced Materials, 2017, 29, .	21.0	1
34	Charge Transfer from Carbon Nanotubes to Silicon in Flexible Carbon Nanotube/Silicon Solar Cells. Small, 2017, 13, 1702387.	10.0	18
35	Stable Graphene-Two-Dimensional Multiphase Perovskite Heterostructure Phototransistors with High Gain. Nano Letters, 2017, 17, 7330-7338.	9.1	88
36	Nanopatterned Bulk Metallic Glass Biosensors. ACS Sensors, 2017, 2, 1779-1787.	7.8	26

#	Article	IF	Citations
37	Combinatorial screening of Pd-based quaternary electrocatalysts for oxygen reduction reaction in alkaline media. Journal of Materials Chemistry A, 2017, 5, 67-72.	10.3	30
38	A New Design Strategy for Observing Lithium Oxide Growth-Evolution Interactions Using Geometric Catalyst Positioning. Nano Letters, 2016, 16, 4799-4806.	9.1	25
39	Pt and Pd catalyzed oxidation of Li ₂ O ₂ and DMSO during Li–O ₂ battery charging. Chemical Communications, 2016, 52, 6605-6608.	4.1	45
40	Development of Omniphobic Desalination Membranes Using a Charged Electrospun Nanofiber Scaffold. ACS Applied Materials & Scaffold.	8.0	218
41	Quaternary Organic Solar Cells Enhanced by Cocrystalline Squaraines with Power Conversion Efficiencies >10%. Advanced Energy Materials, 2016, 6, 1600660.	19.5	46
42	Solution-processed titanium carbide MXene films examined as highly transparent conductors. Nanoscale, 2016, 8, 16371-16378.	5.6	227
43	Solar Cells: Quaternary Organic Solar Cells Enhanced by Cocrystalline Squaraines with Power Conversion Efficiencies > 10% (Adv. Energy Mater. 21/2016). Advanced Energy Materials, 2016, 6, .	19.5	1
44	Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries. Nature Communications, 2016, 7, 12925.	12.8	122
45	Guided Evolution of Bulk Metallic Glass Nanostructures: A Platform for Designing 3D Electrocatalytic Surfaces. Advanced Materials, 2016, 28, 1940-1949.	21.0	71
46	Toward Efficient Thick Active PTB7 Photovoltaic Layers Using Diphenyl Ether as a Solvent Additive. ACS Applied Materials & Diphenyl Ether as a Solvent Additive. ACS Applied Materials & Diphenyl Ether as a Solvent Additive. ACS Applied Materials & Diphenyl Ether as a Solvent Additive. ACS Applied Materials & Diphenyl Ether as a Solvent Additive. ACS Applied Materials & Diphenyl Ether as a Solvent Additive. ACS Applied Materials & Diphenyl Ether as a Solvent Additive. ACS Applied Materials & Diphenyl Ether as a Solvent Additive. ACS Applied Materials & Diphenyl Ether as a Solvent Additive. ACS Applied Materials & Diphenyl Ether as a Solvent Additive. ACS Applied Materials & Diphenyl Ether as a Solvent Additive. ACS Applied Materials & Diphenyl Ether as a Solvent Additive. ACS Applied Materials & Diphenyl Ether as a Solvent Additive. ACS Applied Materials & Diphenyl Ether as a Solvent Additive. ACS Applied Materials & Diphenyl Ether as a Solvent Additive. ACS Applied Materials & Diphenyl Ether active	8.0	92
47	Heterogeneous WS _{<i>x</i>} /WO ₃ Thorn-Bush Nanofiber Electrodes for Sodium-Ion Batteries. ACS Nano, 2016, 10, 3257-3266.	14.6	121
48	Electrocatalysts: Guided Evolution of Bulk Metallic Glass Nanostructures: A Platform for Designing 3D Electrocatalytic Surfaces (Adv. Mater. 10/2016). Advanced Materials, 2016, 28, 1902-1902.	21.0	0
49	Toward Microcapsule-Embedded Self-Healing Membranes. Environmental Science and Technology Letters, 2016, 3, 216-221.	8.7	47
50	Raman Spectroscopy in Lithium–Oxygen Battery Systems. ChemElectroChem, 2015, 2, 1446-1457.	3.4	123
51	Nanoimprinting Sub-100 nm Features in a Photovoltaic Nanocomposite using Durable Bulk Metallic Glass Molds. ACS Applied Materials & Samp; Interfaces, 2015, 7, 3456-3461.	8.0	15
52	Panchromatic polymer–polymer ternary solar cells enhanced by Förster resonance energy transfer and solvent vapor annealing. Journal of Materials Chemistry A, 2015, 3, 18611-18621.	10.3	55
53	Ultrathin Nanotube/Nanowire Electrodes by Spin–Spray Layer-by-Layer Assembly: A Concept for Transparent Energy Storage. ACS Nano, 2015, 9, 10005-10017.	14.6	55
54	Role of HF in Oxygen Removal from Carbon Nanotubes: Implications for High Performance Carbon Electronics. Nano Letters, 2014, 14, 6179-6184.	9.1	32

#	Article	IF	CITATIONS
55	Device Area Scaleâ€Up and Improvement of SWNT/Si Solar Cells Using Silver Nanowires. Advanced Energy Materials, 2014, 4, 1400186.	19.5	35
56	Silver palladium core–shell electrocatalyst supported on MWNTs for ORR in alkaline media. Applied Catalysis B: Environmental, 2013, 138-139, 285-293.	20.2	90
57	Bulk Metallic Glass Micro Fuel Cell. Small, 2013, 9, 2081-2085.	10.0	85
58	Development and electrochemical studies of membrane electrode assemblies for polymer electrolyte alkaline fuel cells using FAA membrane and ionomer. Journal of Power Sources, 2013, 230, 169-175.	7.8	89
59	Pd–Ni–Cu–P metallic glass nanowires for methanol and ethanol oxidation in alkaline media. International Journal of Hydrogen Energy, 2013, 38, 11248-11255.	7.1	75
60	Improved efficiency of smooth and aligned single walled carbon nanotube/silicon hybrid solar cells. Energy and Environmental Science, 2013, 6, 879.	30.8	87
61	Polymer bulk heterojunction solar cells employing Förster resonance energy transfer. Nature Photonics, 2013, 7, 479-485.	31.4	389
62	Metallicâ€Glass Nanostructures: Tunable Hierarchical Metallicâ€Glass Nanostructures (Adv. Funct.) Tj ETQq0 0 C	rgBTJOve	erlock 10 Tf 50
63	Fuel Cells: Bulk Metallic Glass Micro Fuel Cell (Small 12/2013). Small, 2013, 9, 2026-2026.	10.0	1
64	Stratified rod network model of electrical conductance in ultrathin polymer–carbon nanotube multilayers. Physical Review B, 2013, 87, .	3.2	7
65	Tunable Hierarchical Metallicâ€Glass Nanostructures. Advanced Functional Materials, 2013, 23, 2708-2713.	14.9	52
66	Polymer coating of vanadium oxide nanowires to improve cathodic capacity in lithium batteries. Journal of Materials Chemistry A, 2013, 1, 7979.	10.3	21
67	Scalable Fabrication of Multifunctional Freestanding Carbon Nanotube/Polymer Composite Thin Films for Energy Conversion. ACS Nano, 2012, 6, 1347-1356.	14.6	84
68	Improving the Assembly Speed, Quality, and Tunability of Thin Conductive Multilayers. ACS Nano, 2012, 6, 3703-3711.	14.6	53
69	Palladium nanostructures from multi-component metallic glass. Electrochimica Acta, 2012, 74, 145-150.	5.2	47
70	Bulk Metallic Glass Nanowire Architecture for Electrochemical Applications. ACS Nano, 2011, 5, 2979-2983.	14.6	201
71	Fuel Cell Membrane Electrode Assemblies Fabricated by Layerâ€byâ€Layer Electrostatic Selfâ€Assembly Techniques. Advanced Functional Materials, 2008, 18, 3003-3009.	14.9	77
72	A Compact Electron Transport Layer Using a Heated Tinâ€Oxide Colloidal Solution for Efficient Perovskite Solar Cells. Solar Rrl, 0, , 2100794.	5.8	2