Michelle Y Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8732467/publications.pdf

Version: 2024-02-01

331670 377865 2,844 35 21 34 citations h-index g-index papers 36 36 36 3282 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Optogenetic Stimulation Reduces Neuronal Nitric Oxide Synthase Expression After Stroke. Translational Stroke Research, 2021, 12, 347-356.	4.2	12
2	Unique Subtype of Microglia in Degenerative Thalamus After Cortical Stroke. Stroke, 2021, 52, 687-698.	2.0	38
3	Brain-wide neural dynamics of poststroke recovery induced by optogenetic stimulation. Science Advances, 2021, 7, .	10.3	8
4	Inflammatory Responses in the Secondary Thalamic Injury After Cortical Ischemic Stroke. Frontiers in Neurology, 2020, $11,236$.	2.4	22
5	A Review of Magnetic Particle Imaging and Perspectives on Neuroimaging. American Journal of Neuroradiology, 2019, 40, 206-212.	2.4	133
6	Consensus Paper: Experimental Neurostimulation of the Cerebellum. Cerebellum, 2019, 18, 1064-1097.	2.5	120
7	Multimodal image registration and connectivity analysis for integration of connectomic data from microscopy to MRI. Nature Communications, 2019, 10, 5504.	12.8	66
8	Abstract TP115: Cellular and Molecular Characterization of Microglia in Secondary Thalamic Injury After Ischemic Stroke. Stroke, 2019, 50, .	2.0	1
9	The mTOR cell signaling pathway is crucial to the long-term protective effects of ischemic postconditioning against stroke. Neuroscience Letters, 2018, 676, 58-65.	2.1	7
10	RNA-Sequencing Analysis Revealed a Distinct Motor Cortex Transcriptome in Spontaneously Recovered Mice After Stroke. Stroke, 2018, 49, 2191-2199.	2.0	39
11	Optogenetic neuronal stimulation of the lateral cerebellar nucleus promotes persistent functional recovery after stroke. Scientific Reports, 2017, 7, 46612.	3.3	59
12	Optogenetic modulation in stroke recovery. Neurosurgical Focus, 2016, 40, E6.	2.3	16
13	Expression of prokineticin 2 and its receptor in the macaque monkey brain. Chronobiology International, 2016, 33, 191-199.	2.0	10
14	Learning to cope with stress modulates anterior cingulate cortex stargazin expression in monkeys and mice. Neurobiology of Learning and Memory, 2016, 131, 95-100.	1.9	7
15	Optogenetic Approaches to Target Specific Neural Circuits in Post-stroke Recovery. Neurotherapeutics, 2016, 13, 325-340.	4.4	34
16	Optogenetic Approaches to Study Stroke Recovery. ACS Chemical Neuroscience, 2014, 5, 1144-1145.	3.5	19
17	PRAS40 plays a pivotal role in protecting against stroke by linking the Akt and mTOR pathways. Neurobiology of Disease, 2014, 66, 43-52.	4.4	78
18	Optogenetic neuronal stimulation promotes functional recovery after stroke. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12913-12918.	7.1	169

#	Article	IF	Citations
19	Mammalian Target of Rapamycin Cell Signaling Pathway Contributes to the Protective Effects of Ischemic Postconditioning Against Stroke. Stroke, 2014, 45, 2769-2776.	2.0	42
20	Regulation of Prokineticin 2 Expression by Light and the Circadian Clock., 2014, , 1-21.		0
21	Akt Isoforms Differentially Protect against Stroke-Induced Neuronal Injury by Regulating mTOR Activities. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1875-1885.	4.3	70
22	Prokineticin 2 is an endangering mediator of cerebral ischemic injury. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5475-5480.	7.1	54
23	Corticosterone treatment impairs auditory fear learning and the dendritic morphology of the rat inferior colliculus. Hearing Research, 2012, 294, 104-113.	2.0	12
24	Prokineticin 2 is involved in the thermoregulation and energy expenditure. Regulatory Peptides, 2012, 179, 84-90.	1.9	21
25	An Insult-Inducible Vector System Activated by Hypoxia and Oxidative Stress for Neuronal Gene Therapy. Translational Stroke Research, 2011, 2, 92-100.	4.2	15
26	A novel form of oxytocin in New World monkeys. Biology Letters, 2011, 7, 584-587.	2.3	80
27	Blocking Glucocorticoid and Enhancing Estrogenic Genomic Signaling Protects against Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 130-136.	4.3	16
28	Nicotine modulation of stress-related peptide neurons. Journal of Comparative Neurology, 2006, 497, 575-588.	1.6	33
29	Expression of prokineticins and their receptors in the adult mouse brain. Journal of Comparative Neurology, 2006, 498, 796-809.	1.6	103
30	Attenuated Circadian Rhythms in Mice Lacking the <i>Prokineticin 2</i> Gene. Journal of Neuroscience, 2006, 26, 11615-11623.	3.6	149
31	Prokineticin 2 and circadian clock output. FEBS Journal, 2005, 272, 5703-5709.	4.7	74
32	Regulation of prokineticin 2 expression by light and the circadian clock. BMC Neuroscience, 2005, 6, 17.	1.9	67
33	Dependence of Olfactory Bulb Neurogenesis on Prokineticin 2 Signaling. Science, 2005, 308, 1923-1927.	12.6	282
34	Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature, 2002, 417, 405-410.	27.8	643
35	Expression of the melanin-concentrating hormone (MCH) receptor mRNA in the rat brain. Journal of Comparative Neurology, 2001, 435, 26-40.	1.6	345