
Marc Tatar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8728256/publications.pdf Version: 2024-02-01

Μάρς Τάταρ

#	Article	IF	CITATIONS
1	Aging modulated by the <i>Drosophila</i> insulin receptor through distinct structure-defined mechanisms. Genetics, 2021, 217, .	2.9	11
2	Aging Regulated Through a Stability Model of Insulin/Insulin Growth Factor Receptor Function. Frontiers in Endocrinology, 2021, 12, 649880.	3.5	5
3	Extra-cellular matrix induced by steroids and aging through a G-protein coupled receptor in a Drosophila model of renal fibrosis. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	5
4	The hidden costs of dietary restriction: Implications for its evolutionary and mechanistic origins. Science Advances, 2020, 6, eaay3047.	10.3	41
5	Regulatory Roles of Drosophila Insulin-Like Peptide 1 (DILP1) in Metabolism Differ in Pupal and Adult Stages. Frontiers in Endocrinology, 2020, 11, 180.	3.5	11
6	Age-Dependent Changes in Transcription Factor FOXO Targeting in Female Drosophila. Frontiers in Genetics, 2019, 10, 312.	2.3	37
7	<i>Drosophila </i> insulinâ€like peptide <i>dilp1 </i> increases lifespan and glucagonâ€like Akh expression epistatic to <i>dilp2</i> . Aging Cell, 2019, 18, e12863.	6.7	51
8	Dehydration triggers ecdysone-mediated recognition-protein priming and elevated anti-bacterial immune responses in Drosophila Malpighian tubule renal cells. BMC Biology, 2018, 16, 60.	3.8	37
9	Ecdysone Elicits Chronic Renal Impairment via Mineralocorticoid-Like Pathogenic Activities. Cellular Physiology and Biochemistry, 2018, 49, 1633-1645.	1.6	6
10	Drosophila Insulin-Like Peptides DILP2 and DILP5 Differentially Stimulate Cell Signaling and Glycogen Phosphorylase to Regulate Longevity. Frontiers in Endocrinology, 2018, 9, 245.	3.5	72
11	Unraveling the Molecular Mechanism of Immunosenescence in Drosophila. International Journal of Molecular Sciences, 2018, 19, 2472.	4.1	18
12	Total Solid-Phase Synthesis of Biologically Active Drosophila Insulin-Like Peptide 2 (DILP2). Australian Journal of Chemistry, 2017, 70, 208.	0.9	18
13	Drosophila Kruppel homolog 1 represses lipolysis through interaction with dFOXO. Scientific Reports, 2017, 7, 16369.	3.3	39
14	Reproduction regulates Drosophila nutrient intake through independent effects of egg production and sex peptide: Implications for aging. Nutrition and Healthy Aging, 2016, 4, 55-61.	1.1	21
15	Mitochondria: Masters of Epigenetics. Cell, 2016, 165, 1052-1054.	28.9	19
16	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
17	Nutritional Geometric Profiles of Insulin/IGF Expression in Drosophila melanogaster. PLoS ONE, 2016, 11, e0155628.	2.5	60
18	Tequila Regulates Insulin-Like Signaling and Extends Life Span in <i>Drosophila melanogaster</i> . Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 1461-1469.	3.6	23

MARC TATAR

#	Article	IF	CITATIONS
19	Drosophila Longevity Assurance Conferred by Reduced Insulin Receptor Substrate Chico Partially Requires d4eBP. PLoS ONE, 2015, 10, e0134415.	2.5	22
20	Nutrient control of Drosophila longevity. Trends in Endocrinology and Metabolism, 2014, 25, 509-517.	7.1	123
21	Transcriptional response to dietary restriction in Drosophila melanogaster. Journal of Insect Physiology, 2014, 69, 101-106.	2.0	16
22	Dietary switch reveals fast coordinated gene expression changes in Drosophila melanogaster. Aging, 2014, 6, 355-368.	3.1	47
23	Juvenile hormone regulation of Drosophila aging. BMC Biology, 2013, 11, 85.	3.8	114
24	Ecdysone triggered PGRP-LC expression controls Drosophila innate immunity. EMBO Journal, 2013, 32, 1626-1638.	7.8	127
25	Activin Signaling Targeted by Insulin/dFOXO Regulates Aging and Muscle Proteostasis in Drosophila. PLoS Genetics, 2013, 9, e1003941.	3.5	172
26	Minibrain/Dyrk1a Regulates Food Intake through the Sir2-FOXO-sNPF/NPY Pathway in Drosophila and Mammals. PLoS Genetics, 2012, 8, e1002857.	3.5	107
27	Fine-Scale Mapping of Natural Variation in Fly Fecundity Identifies Neuronal Domain of Expression and Function of an Aquaporin. PLoS Genetics, 2012, 8, e1002631.	3.5	36
28	Drosophila insulinâ€like peptideâ€6 (<i>dilp6</i>) expression from fat body extends lifespan and represses secretion of Drosophila insulinâ€like peptideâ€2 from the brain. Aging Cell, 2012, 11, 978-985.	6.7	225
29	Misexpression screen delineates novel genes controlling Drosophila lifespan. Mechanisms of Ageing and Development, 2012, 133, 234-245.	4.6	53
30	The effects of a longâ€ŧerm psychosocial stress on reproductive indicators in the baboon. American Journal of Physical Anthropology, 2011, 145, 629-638.	2.1	20
31	Resveratrol Inhibits Protein Translation in Hepatic Cells. PLoS ONE, 2011, 6, e29513.	2.5	21
32	Insulin receptor substrate <i>chico</i> acts with the transcription factor FOXO to extend Drosophila lifespan. Aging Cell, 2011, 10, 729-732.	6.7	63
33	The plate half-full: Status of research on the mechanisms of dietary restriction in Drosophila melanogaster. Experimental Gerontology, 2011, 46, 363-368.	2.8	75
34	Structural and Biological Properties of the Drosophila Insulin-like Peptide 5 Show Evolutionary Conservation. Journal of Biological Chemistry, 2011, 286, 661-673.	3.4	61
35	Reproductive aging in invertebrate genetic models. Annals of the New York Academy of Sciences, 2010, 1204, 149-155.	3.8	38
36	Dietary Restriction: Standing Up for Sirtuins. Science, 2010, 329, 1012-1013.	12.6	63

MARC TATAR

#	Article	IF	CITATIONS
37	Hormonal regulation of Drosophila microRNA let-7 and miR-125 that target innate immunity. Fly, 2010, 4, 306-311.	1.7	87
38	A Role for Drosophila dFoxO and dFoxO 5′UTR Internal Ribosomal Entry Sites during Fasting. PLoS ONE, 2010, 5, e11521.	2.5	15
39	Can We Develop Genetically Tractable Models to Assess Healthspan (Rather Than Life Span) in Animal Models?. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 161-163.	3.6	48
40	Metabolism by Remote Control. Cell Metabolism, 2009, 10, 164-166.	16.2	9
41	Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signalling. Nature Cell Biology, 2008, 10, 468-475.	10.3	198
42	Aging Cell- the Cowen era: looking back downstream from calmer waters. Aging Cell, 2008, 7, 1-1.	6.7	2
43	<i>Drosophila</i> lifespan control by dietary restriction independent of insulinâ€like signaling. Aging Cell, 2008, 7, 199-206.	6.7	179
44	Use of stable isotopes to examine how dietary restriction extends Drosophila lifespan. Current Biology, 2008, 18, R155-R156.	3.9	73
45	<i>Drosophila</i> germ-line modulation of insulin signaling and lifespan. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6368-6373.	7.1	260
46	Hormonal regulation of the humoral innate immune response in <i>Drosophila melanogaster</i> . Journal of Experimental Biology, 2008, 211, 2712-2724.	1.7	216
47	Quantitative Trait Loci Affecting Phenotypic Plasticity and the Allometric Relationship of Ovariole Number and Thorax Length in <i>Drosophila melanogaster</i> . Genetics, 2008, 180, 567-582.	2.9	82
48	High-resolution dynamics of the transcriptional response to nutrition in Drosophila: a key role for dFOXO. Physiological Genomics, 2007, 29, 24-34.	2.3	156
49	A Smell to Die for. Developmental Cell, 2007, 12, 322-324.	7.0	0
50	Correlation analysis reveals the emergence of coherence in the gene expression dynamics following system perturbation. BMC Bioinformatics, 2007, 8, S16.	2.6	6
51	Counting calories in Drosophila diet restriction. Experimental Gerontology, 2007, 42, 247-251.	2.8	88
52	Drosophila diet restriction in practice: Do flies consume fewer nutrients?. Mechanisms of Ageing and Development, 2006, 127, 93-96.	4.6	72
53	Restriction of amino acids extends lifespan in Drosophila melanogaster. Mechanisms of Ageing and Development, 2006, 127, 643-646.	4.6	128
54	Resource allocation to reproduction and soma in Drosophila: A stable isotope analysis of carbon from dietary sugar. Journal of Insect Physiology, 2006, 52, 763-770.	2.0	48

Marc Tatar

#	Article	IF	CITATIONS
55	Diet Restriction in Drosophila melanogaster. , 2006, 35, 115-136.		48
56	Comparing thyroid and insect hormone signaling. Integrative and Comparative Biology, 2006, 46, 777-794.	2.0	51
57	Welcome to the new section of the Editorial Board of Aging Cell: Stem Cells in Aging. Aging Cell, 2005, 4, 165-165.	6.7	1
58	Aging of the innate immune response in Drosophila melanogaster. Aging Cell, 2005, 4, 103-108.	6.7	192
59	What are the effects of maternal and pre-adult environments on ageing in humans, and are there lessons from animal models?. Mechanisms of Ageing and Development, 2005, 126, 431-438.	4.6	48
60	Mutations in insulin signaling pathway alter juvenile hormone synthesis in Drosophila melanogaster. General and Comparative Endocrinology, 2005, 142, 347-356.	1.8	215
61	Hormonal pleiotropy and the juvenile hormone regulation ofDrosophila development and life history. BioEssays, 2005, 27, 999-1010.	2.5	422
62	Juvenile and Steroid Hormones in Drosophila melanogaster Longevity. , 2005, , 415-448.		8
63	Response to Comment on "Long-Lived Drosophila with Overexpressed dFOXO in Adult Fat Body". Science, 2005, 307, 675b-675b.	12.6	9
64	SIR2 calls upon the ER. Cell Metabolism, 2005, 2, 281-282.	16.2	8
65	Insulin regulation of heart function in aging fruit flies. Nature Genetics, 2004, 36, 1275-1281.	21.4	295
66	Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature, 2004, 429, 562-566.	27.8	873
67	Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature, 2004, 430, 686-689.	27.8	1,742
68	The neuroendocrine regulation of Drosophila aging. Experimental Gerontology, 2004, 39, 1745-1750.	2.8	48
69	Reduced Polymorphism in the Chimpanzee Semen Coagulating Protein, Semenogelin I. Journal of Molecular Evolution, 2003, 57, 159-169.	1.8	66
70	Juvenile diet restriction and the aging and reproduction of adult Drosophila melanogaster. Aging Cell, 2003, 2, 327-333.	6.7	161
71	The Endocrine Regulation of Aging by Insulin-like Signals. Science, 2003, 299, 1346-1351.	12.6	1,204
72	Unearthing Loci That Influence Life Span. Science of Aging Knowledge Environment: SAGE KE, 2003, 2003, 5pe-5.	0.8	3

Marc Tatar

#	Article	IF	CITATIONS
73	The aging baboon: Comparative demography in a non-human primate. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9591-9595.	7.1	181
74	AGING: Dietary Advice on Q. Science, 2002, 295, 54-55.	12.6	7
75	Germ-line stem cells call the shots. Trends in Ecology and Evolution, 2002, 17, 297-298.	8.7	9
76	The demography of slow aging in male and femaleDrosophilamutant for the insulinâ€receptor substrate homologuechico. Aging Cell, 2002, 1, 75-80.	6.7	102
77	Impaired ovarian ecdysone synthesis of Drosophila melanogaster insulin receptor mutants. Aging Cell, 2002, 1, 158-160.	6.7	126
78	Regulation of Aging by Germline Stem Cells. Science of Aging Knowledge Environment: SAGE KE, 2002, 2002, 2pe-2.	0.8	4
79	A Mutant <i>Drosophila</i> Insulin Receptor Homolog That Extends Life-Span and Impairs Neuroendocrine Function. Science, 2001, 292, 107-110.	12.6	1,500
80	Slow aging during insect reproductive diapause: why butterflies, grasshoppers and flies are like worms. Experimental Gerontology, 2001, 36, 723-738.	2.8	298
81	Juvenile hormone regulation of longevity in the migratory monarch butterfly. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 2509-2514.	2.6	111
82	Negligible Senescence during Reproductive Dormancy inDrosophila melanogaster. American Naturalist, 2001, 158, 248-258.	2.1	145
83	REPRODUCTIVE COSTS OF HEAT SHOCK PROTEIN IN TRANSGENIC DROSOPHILA MELANOGASTER. Evolution; International Journal of Organic Evolution, 2000, 54, 2038-2045.	2.3	144
84	Transgenic organisms in evolutionary ecology. Trends in Ecology and Evolution, 2000, 15, 207-211.	8.7	19
85	Evolution of Senescence: Longevity and the Expression of Heat Shock Proteins. American Zoologist, 1999, 39, 920-927.	0.7	17
86	Transgenes in the Analysis of Life Span and Fitness. American Naturalist, 1999, 154, S67-S81.	2.1	47
87	Toward Reconciling Inferences Concerning Genetic Variation in Senescence in Drosophila melanogaster. Genetics, 1999, 152, 553-566.	2.9	49
88	Mutation and senescence: where genetics and demography meet. Genetica, 1998, 102/103, 299-314.	1.1	106
89	Genetic analysis of extended life span in Drosophila melanogaster. II. Replication of the backcross test and molecular characterization of the N14 locus. Genetica, 1998, 104, 33-39.	1.1	14
90	Reproductive cessation in female mammals. Nature, 1998, 392, 807-811.	27.8	367

MARC TATAR

#	Article	IF	CITATIONS
91	Mutation and senescence: where genetics and demography meet. Contemporary Issues in Genetics and Evolution, 1998, , 299-314.	0.9	1
92	FITNESS COSTS OF FEMALE REPRODUCTION. Evolution; International Journal of Organic Evolution, 1997, 51, 1323-1326.	2.3	16
93	Chaperoning extended life. Nature, 1997, 390, 30-30.	27.8	316
94	Altitudinal variation for senescence in Melanoplus grasshoppers. Oecologia, 1997, 111, 357-364.	2.0	78
95	Age-Specific Patterns of Genetic Variance in <i>Drosophila melanogaster</i> . I. Mortality. Genetics, 1996, 143, 839-848.	2.9	167
96	Age-Specific Patterns of Genetic Variance in <i>Drosophila melanogaster</i> . II. Fecundity and Its Genetic Covariance With Age-Specific Mortality. Genetics, 1996, 143, 849-858.	2.9	109
97	Nutrition Mediates Reproductive Trade-Offs with Age-Specific Mortality in the Beetle Callosobruchus Maculatus. Ecology, 1995, 76, 2066-2073.	3.2	131
98	Genetic Variation and Aging. Annual Review of Genetics, 1995, 29, 553-575.	7.6	111
99	GENETICS OF MORTALITY IN THE BEAN BEETLE <i>CALLOSOBRUCHUS MACULATUS</i> . Evolution; International Journal of Organic Evolution, 1994, 48, 1371-1376.	2.3	19
100	Oviposition substrate affects adult mortality, independent of reproduction, in the seed beetle <i>Callosobruchus maculatus</i> . Ecological Entomology, 1994, 19, 108-110.	2.2	15
101	Sex Mortality Differentials in the Bean Beetle: Reframing the Question. American Naturalist, 1994, 144, 165-175.	2.1	24
102	LONG-TERM COST OF REPRODUCTION WITH AND WITHOUT ACCELERATED SENESCENCE IN <i>CALLOSOBRUCHUS MACULATUS:</i> ANALYSIS OF AGE-SPECIFIC MORTALITY. Evolution; International Journal of Organic Evolution, 1993, 47, 1302-1312.	2.3	102
103	Clutch size in the swallowtail butterfly, Battus philenor: the role of host quality and egg load within and among seasonal flights in California. Behavioral Ecology and Sociobiology, 1991, 28, 337-344.	1.4	34
104	Swallowtail Clutch Size Reconsidered. Oikos, 1989, 55, 135.	2.7	8