
Prafulla D Patil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8727787/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimization of biodiesel production from edible and non-edible vegetable oils. Fuel, 2009, 88, 1302-1306.	6.4	438
2	Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresource Technology, 2011, 102, 118-122.	9.6	321
3	Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology. Bioresource Technology, 2011, 102, 1399-1405.	9.6	178
4	Comparison of direct transesterification of algal biomass under supercritical methanol and microwave irradiation conditions. Fuel, 2012, 97, 822-831.	6.4	171
5	Microwave energy potential for biodiesel production. Sustainable Chemical Processes, 2013, 1, 5.	2.3	167
6	Direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions. Fuel, 2014, 115, 720-726.	6.4	151
7	Conversion of waste cooking oil to biodiesel using ferric sulfate and supercritical methanol processes. Fuel, 2010, 89, 360-364.	6.4	150
8	Biodiesel Production from Waste Cooking Oil Using Sulfuric Acid and Microwave Irradiation Processes. Journal of Environmental Protection, 2012, 03, 107-113.	0.7	120
9	Transesterification kinetics of Camelina sativa oil on metal oxide catalysts under conventional and microwave heating conditions. Chemical Engineering Journal, 2011, 168, 1296-1300.	12.7	105
10	Biodiesel Production from Jatropha Curcas, Waste Cooking, and Camelina Sativa Oils. Industrial & Engineering Chemistry Research, 2009, 48, 10850-10856.	3.7	102
11	Microwave-Assisted Catalytic Transesterification of <i>Camelina Sativa</i> Oil. Energy & Fuels, 2010, 24, 1298-1304.	5.1	100
12	Extraction of bio-oils from algae with supercritical carbon dioxide and co-solvents. Journal of Supercritical Fluids, 2018, 135, 60-68.	3.2	100
13	Transesterification of Camelina Sativa Oil Using Heterogeneous Metal Oxide Catalysts. Energy & Fuels, 2009, 23, 4619-4624.	5.1	94
14	Subcritical water extraction of lipids from wet algae for biodiesel production. Fuel, 2014, 133, 73-81.	6.4	89
15	In situ ethyl ester production from wet algal biomass under microwave-mediated supercritical ethanol conditions. Bioresource Technology, 2013, 139, 308-315.	9.6	79
16	Ethanolysis of camelina oil under supercritical condition with hexane as a co-solvent. Applied Energy, 2012, 94, 84-88.	10.1	68
17	Optimization of biodiesel production from palm oil under supercritical ethanol conditions using hexane as co-solvent: A response surface methodology approach. Fuel, 2013, 107, 633-640.	6.4	68
18	Biodiesel fuel production from algal lipids using supercritical methyl acetate (glycerin-free) technology. Fuel, 2017, 195, 201-207.	6.4	66

PRAFULLA D PATIL

#	Article	IF	CITATIONS
19	Power dissipation in microwave-enhanced in situ transesterification of algal biomass to biodiesel. Green Chemistry, 2012, 14, 809.	9.0	64
20	Transesterification of <i>Camelina Sativa</i> Oil using Supercritical and Subcritical Methanol with Cosolvents. Energy & Fuels, 2010, 24, 746-751.	5.1	46
21	Optimization of microwave-enhanced methanolysis of algal biomass to biodiesel under temperature controlled conditions. Bioresource Technology, 2013, 137, 278-285.	9.6	42
22	Optimization of high-energy density biodiesel production from camelina sativa oil under supercritical 1-butanol conditions. Fuel, 2014, 135, 522-529.	6.4	30
23	Microwave-mediated non-catalytic transesterification of algal biomass under supercritical ethanol conditions. Journal of Supercritical Fluids, 2013, 79, 67-72.	3.2	28
24	A comparative study of direct transesterification of camelina oil under supercritical methanol, ethanol and 1-butanol conditions. Fuel, 2014, 135, 530-536.	6.4	24
25	Biodiesel production from low cost and renewable feedstock. Open Engineering, 2013, 3, .	1.6	19
26	Fouling Diagnosis of Pennsylvania Grade Crude Blended with Opportunity Crude Oils in a Refinery Crude Unit's Hot Heat Exchanger Train. Industrial & Engineering Chemistry Research, 2019, 58, 17918-17927.	3.7	5