List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8726110/publications.pdf Version: 2024-02-01

FENCLU

#	Article	IF	CITATIONS
1	Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Research, 2014, 24, 177-189.	12.0	1,719
2	m6A modulates haematopoietic stem and progenitor cell specification. Nature, 2017, 549, 273-276.	27.8	436
3	Sperm, but Not Oocyte, DNA Methylome Is Inherited by Zebrafish Early Embryos. Cell, 2013, 153, 773-784.	28.9	428
4	RNA 5-Methylcytosine Facilitates the Maternal-to-Zygotic Transition by Preventing Maternal mRNA Decay. Molecular Cell, 2019, 75, 1188-1202.e11.	9.7	242
5	15,000 Unique Zebrafish EST Clusters and Their Future Use in Microarray for Profiling Gene Expression Patterns During Embryogenesis. Genome Research, 2003, 13, 455-466.	5.5	238
6	Fli1 Acts at the Top of the Transcriptional Network Driving Blood and Endothelial Development. Current Biology, 2008, 18, 1234-1240.	3.9	174
7	Inflammatory signaling regulates hematopoietic stem and progenitor cell emergence in vertebrates. Blood, 2015, 125, 1098-1106.	1.4	145
8	Genome-Wide Analysis of the Zebrafish ETS Family Identifies Three Genes Required for Hemangioblast Differentiation or Angiogenesis. Circulation Research, 2008, 103, 1147-1154.	4.5	113
9	Hematopoietic Hierarchy – An Updated Roadmap. Trends in Cell Biology, 2018, 28, 976-986.	7.9	106
10	CD146 acts as a novel receptor for netrin-1 in promoting angiogenesis and vascular development. Cell Research, 2015, 25, 275-287.	12.0	100
11	A blood flow–dependent klf2a-NO signaling cascade is required for stabilization of hematopoietic stem cell programming in zebrafish embryos. Blood, 2011, 118, 4102-4110.	1.4	94
12	G protein-coupled receptor 183 facilitates endothelial-to-hematopoietic transition via Notch1 inhibition. Cell Research, 2015, 25, 1093-1107.	12.0	90
13	Cloning and expression pattern of the lysozyme C gene in zebrafish. Mechanisms of Development, 2002, 113, 69-72.	1.7	87
14	Essential role for SUN5 in anchoring sperm head to the tail. ELife, 2017, 6, .	6.0	84
15	Endothelial-specific m6A modulates mouse hematopoietic stem and progenitor cell development via Notch signaling. Cell Research, 2018, 28, 249-252.	12.0	84
16	miR-142-3p regulates the formation and differentiation of hematopoietic stem cells in vertebrates. Cell Research, 2013, 23, 1356-1368.	12.0	80
17	Wnt5a uses CD146 as a receptor to regulate cell motility and convergent extension. Nature Communications, 2013, 4, 2803.	12.8	70
18	Regulatory mechanisms of thymus and T cell development. Developmental and Comparative Immunology, 2013, 39, 91-102.	2.3	64

#	Article	IF	CITATIONS
19	Single-cell chromatin accessibility maps reveal regulatory programs driving early mouse organogenesis. Nature Cell Biology, 2020, 22, 487-497.	10.3	62
20	Genome Editing and Its Applications in Model Organisms. Genomics, Proteomics and Bioinformatics, 2015, 13, 336-344.	6.9	55
21	Genetic control of hematopoietic development in Xenopus and zebrafish. International Journal of Developmental Biology, 2010, 54, 1139-1149.	0.6	50
22	The Vascular Niche Regulates Hematopoietic Stem and Progenitor Cell Lodgment and Expansion via klf6a-ccl25b. Developmental Cell, 2017, 42, 349-362.e4.	7.0	50
23	ETS transcription factors in hematopoietic stem cell development. Blood Cells, Molecules, and Diseases, 2013, 51, 248-255.	1.4	49
24	Fev regulates hematopoietic stem cell development via ERK signaling. Blood, 2013, 122, 367-375.	1.4	48
25	Identification of HSC/MPP expansion units in fetal liver by single-cell spatiotemporal transcriptomics. Cell Research, 2022, 32, 38-53.	12.0	48
26	The Role of Serotonin beyond the Central Nervous System during Embryogenesis. Frontiers in Cellular Neuroscience, 2017, 11, 74.	3.7	45
27	A 3D Atlas of Hematopoietic Stem and Progenitor Cell Expansion by Multi-dimensional RNA-Seq Analysis. Cell Reports, 2019, 27, 1567-1578.e5.	6.4	45
28	Repetitive Elements Trigger RIG-I-like Receptor Signaling that Regulates the Emergence of Hematopoietic Stem and Progenitor Cells. Immunity, 2020, 53, 934-951.e9.	14.3	43
29	Activation of Smurf E3 Ligase Promoted by Smoothened Regulates Hedgehog Signaling through Targeting Patched Turnover. PLoS Biology, 2013, 11, e1001721.	5.6	42
30	Primary cilia regulate hematopoietic stem and progenitor cell specification through Notch signaling in zebrafish. Nature Communications, 2019, 10, 1839.	12.8	42
31	Inhibition of endothelial ERK signalling by Smad1/5 is essential for haematopoietic stem cell emergence. Nature Communications, 2014, 5, 3431.	12.8	40
32	Ncor2 is required for hematopoietic stem cell emergence by inhibiting Fos signaling in zebrafish. Blood, 2014, 124, 1578-1585.	1.4	40
33	Thyroid hormone regulates hematopoiesis via the TR-KLF9 axis. Blood, 2017, 130, 2161-2170.	1.4	40
34	Ponatinib (AP24534) inhibits MEKK3-KLF signaling and prevents formation and progression of cerebral cavernous malformations. Science Advances, 2018, 4, eaau0731.	10.3	36
35	Foxn1 maintains thymic epithelial cells to support T-cell development via <i>mcm2</i> in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21040-21045.	7.1	34
36	RNA structural dynamics regulate early embryogenesis through controlling transcriptome fate and function. Genome Biology, 2020, 21, 120.	8.8	34

#	Article	IF	CITATIONS
37	A single-cell resolution developmental atlas of hematopoietic stem and progenitor cell expansion in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	34
38	Hematopoietic stem cell development and regulatory signaling in zebrafish. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2370-2374.	2.4	33
39	Atrophin–Rpd3 complex represses Hedgehog signaling by acting as a corepressor of CiR. Journal of Cell Biology, 2013, 203, 575-583.	5.2	33
40	Novel insights into cell cycle regulation of cell fate determination. Journal of Zhejiang University: Science B, 2019, 20, 467-475.	2.8	33
41	Genome-wide analysis of the zebrafish Klf family identifies two genes important for erythroid maturation. Developmental Biology, 2015, 403, 115-127.	2.0	32
42	BLOS2 negatively regulates Notch signaling during neural and hematopoietic stem and progenitor cell development. ELife, 2016, 5, .	6.0	32
43	Systematic genome editing of the genes on zebrafish Chromosome 1 by CRISPR/Cas9. Genome Research, 2020, 30, 118-126.	5.5	32
44	Irf4 Regulates the Choice between T Lymphoid-Primed Progenitor and Myeloid Lineage Fates during Embryogenesis. Developmental Cell, 2015, 34, 621-631.	7.0	27
45	5-hydroxytryptamine synthesized in the aorta-gonad-mesonephros regulates hematopoietic stem and progenitor cell survival. Journal of Experimental Medicine, 2017, 214, 529-545.	8.5	27
46	Gut microbiota drives macrophage-dependent self-renewal of intestinal stem cells via niche enteric serotonergic neurons. Cell Research, 2022, 32, 555-569.	12.0	26
47	De novo generation of macrophage from placenta-derived hemogenic endothelium. Developmental Cell, 2021, 56, 2121-2133.e6.	7.0	25
48	Epigenetic regulation of left–right asymmetry by <scp>DNA</scp> methylation. EMBO Journal, 2017, 36, 2987-2997.	7.8	24
49	CD146 is required for VEGF-C-induced lymphatic sprouting during lymphangiogenesis. Scientific Reports, 2017, 7, 7442.	3.3	24
50	Smarca5-mediated epigenetic programming facilitates fetal HSPC development in vertebrates. Blood, 2021, 137, 190-202.	1.4	24
51	Fetal liver: an ideal niche for hematopoietic stem cell expansion. Science China Life Sciences, 2018, 61, 885-892.	4.9	20
52	Liver-Enriched Gene 1, a Glycosylated Secretory Protein, Binds to FGFR and Mediates an Anti-stress Pathway to Protect Liver Development in Zebrafish. PLoS Genetics, 2016, 12, e1005881.	3.5	19
53	Microtubule asters anchored by FSD1 control axoneme assembly and ciliogenesis. Nature Communications, 2018, 9, 5277.	12.8	17
54	COVID-19 and cardiovascular diseases. Journal of Molecular Cell Biology, 2021, 13, 161-167.	3.3	17

#	Article	IF	CITATIONS
55	The heparan sulfate editing enzyme Sulf1 plays a novel role in zebrafish VegfA mediated arterial venous identity. Angiogenesis, 2014, 17, 77-91.	7.2	16
56	Chromatin remodeler Znhit1 preserves hematopoietic stem cell quiescence by determining the accessibility of distal enhancers. Leukemia, 2020, 34, 3348-3358.	7.2	16
57	Rab5c-mediated endocytic trafficking regulates hematopoietic stem and progenitor cell development via Notch and AKT signaling. PLoS Biology, 2020, 18, e3000696.	5.6	16
58	Direct regulation of p53 by miR-142a-3p mediates the survival of hematopoietic stem and progenitor cells in zebrafish. Cell Discovery, 2015, 1, 15027.	6.7	15
59	Rac2 Regulates the Migration of T Lymphoid Progenitors to the Thymus during Zebrafish Embryogenesis. Journal of Immunology, 2020, 204, 2447-2454.	0.8	15
60	Separating early sensory neuron and blood vessel patterning. Developmental Dynamics, 2010, 239, 3297-3302.	1.8	14
61	In vivo imaging of hematopoietic stem cell development in the zebrafish. Frontiers of Medicine, 2011, 5, 239-247.	3.4	14
62	UXT potentiates angiogenesis by attenuating Notch signaling. Development (Cambridge), 2015, 142, 774-86.	2.5	13
63	Knockdown of transcription factor forkhead box O3 (FOXO3) suppresses erythroid differentiation in human cells and zebrafish. Biochemical and Biophysical Research Communications, 2015, 460, 923-930.	2.1	13
64	Generation of foxn1/Casper Mutant Zebrafish for Allograft and Xenograft of Normal and Malignant Cells. Stem Cell Reports, 2020, 15, 749-760.	4.8	13
65	Transcriptional and epigenetic control of hematopoietic stem cell fate decisions in vertebrates. Developmental Biology, 2021, 475, 156-164.	2.0	13
66	Methylome inheritance and enhancer dememorization reset an epigenetic gate safeguarding embryonic programs. Science Advances, 2021, 7, eabl3858.	10.3	12
67	Phase separation of Ddx3xb helicase regulates maternal-to-zygotic transition in zebrafish. Cell Research, 2022, 32, 715-728.	12.0	12
68	Unexpected role of inflammatory signaling in hematopoietic stem cell development. Current Opinion in Hematology, 2016, 23, 18-22.	2.5	11
69	Multidimensional Single-Cell Analyses in Organ Development and Maintenance. Trends in Cell Biology, 2019, 29, 477-486.	7.9	10
70	RNA polymerase III component Rpc9 regulates hematopoietic stem and progenitor cell maintenance in zebrafish. Development (Cambridge), 2016, 143, 2103-10.	2.5	9
71	UbcD1 regulates Hedgehog signaling by directly modulating Ci ubiquitination and processing. EMBO Reports, 2017, 18, 1922-1934.	4.5	9
72	The chromatin-remodeling enzyme Smarca5 regulates erythrocyte aggregation via Keap1-Nrf2 signaling. ELife, 2021, 10, .	6.0	9

#	Article	IF	CITATIONS
73	Cautious use of fli1a:EGFP transgenic zebrafish in vascular research. Biochemical and Biophysical Research Communications, 2012, 427, 223-226.	2.1	8
74	Expression of the fetal hematopoiesis regulator FEV indicates leukemias of prenatal origin. Leukemia, 2017, 31, 1079-1086.	7.2	7
75	RNA methylation regulates hematopoietic stem/progenitor cell specification. Science China Life Sciences, 2018, 61, 610-612.	4.9	3
76	BLOS2 maintains hematopoietic stem cells in the fetal liver via repressing Notch signaling. Experimental Hematology, 2017, 51, 1-6.e2.	0.4	2
77	DNA methylation safeguards the generation of hematopoietic stem and progenitor cells by repression of Notch signaling. Development (Cambridge), 2022, , .	2.5	2
78	BLOS2 negatively regulates notch signaling during hematopoietic stem and progenitor cell development in vertebrates. Experimental Hematology, 2016, 44, S89.	0.4	1
79	Application of Aorta-gonad-mesonephros Explant Culture System in Developmental Hematopoiesis. Journal of Visualized Experiments, 2017, , .	0.3	1
80	DNA Methylation Reshapes Sex Development in Zebrafish. Genomics, Proteomics and Bioinformatics, 2021, 19, 44-47.	6.9	1
81	Protocols for isolation and characterization of mouse placental hemogenic endothelial cells. STAR Protocols, 2021, 2, 100884.	1.2	1
82	P53 mediates loss of hematopoietic stem cells in MIR-142A-3P mutants. Experimental Hematology, 2015, 43, S47.	0.4	0
83	Title is missing!. , 2020, 18, e3000696.		0
84	Title is missing!. , 2020, 18, e3000696.		0
85	Title is missing!. , 2020, 18, e3000696.		0
86	Title is missing!. , 2020, 18, e3000696.		0
87	Title is missing!. , 2020, 18, e3000696.		0
88	Title is missing!. , 2020, 18, e3000696.		0