
Christian Dani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8726070/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Various rat adult tissues express only one major mRNA species from the glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nucleic Acids Research, 1985, 13, 1431-1442.	6.5	2,147
2	Extreme instability of myc mRNA in normal and transformed human cells Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 7046-7050.	3.3	538
3	Post-transcriptional regulation of glyceraldehyde-3-phosphate-dehydrogenase gene expression in rat tissues. Nucleic Acids Research, 1984, 12, 6951-6963.	6.5	486
4	Increased expression in adipocytes of ob RNA in mice with lesions of the hypothalamus and with mutations at the db locus Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 6957-6960.	3.3	418
5	Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. Journal of Experimental Medicine, 2005, 201, 1397-1405.	4.2	389
6	microRNA miR-27b impairs human adipocyte differentiation and targets PPARÎ ³ . Biochemical and Biophysical Research Communications, 2009, 390, 247-251.	1.0	385
7	The human adipose tissue is a source of multipotent stem cells. Biochimie, 2005, 87, 125-128.	1.3	360
8	c-myc gene is transcribed at high rate in GO-arrested fibroblasts and is post-transcriptionally regulated in response to growth factors. Nature, 1985, 317, 443-445.	13.7	324
9	Dicistronic targeting constructs: reporters and modifiers of mammalian gene expression Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 4303-4307.	3.3	311
10	The Extracellular Signal-Regulated Kinase Isoform ERK1 Is Specifically Required for In Vitro and In Vivo Adipogenesis. Diabetes, 2005, 54, 402-411.	0.3	285
11	A role for preadipocytes as macrophageâ€ l ike cells. FASEB Journal, 1999, 13, 305-312.	0.2	279
12	Adipocyte differentiation of multipotent cells established from human adipose tissue. Biochemical and Biophysical Research Communications, 2004, 315, 255-263.	1.0	264
13	Expression of ob Gene in Adipose Cells. Journal of Biological Chemistry, 1996, 271, 2365-2368.	1.6	261
14	The generation of adipocytes by the neural crest. Development (Cambridge), 2007, 134, 2283-2292.	1.2	245
15	Autocrine Fibroblast Growth Factor 2 Signaling Is Critical for Self-Renewal of Human Multipotent Adipose-Derived Stem Cells. Stem Cells, 2006, 24, 2412-2419.	1.4	227
16	Human Multipotent Adipose-Derived Stem Cells Differentiate into Functional Brown Adipocytes. Stem Cells, 2009, 27, 2753-2760.	1.4	223
17	Browning of White Adipose Cells by Intermediate Metabolites: An Adaptive Mechanism to Alleviate Redox Pressure. Diabetes, 2014, 63, 3253-3265.	0.3	220
18	Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biology, 2011, 12, R64.	13.9	207

#	Article	IF	CITATIONS
19	Increased rate of degradation of c-myc mRNA in interferon-treated Daudi cells Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 4896-4899.	3.3	206
20	Embryonic Stem Cells Generate Airway Epithelial Tissue. American Journal of Respiratory Cell and Molecular Biology, 2005, 32, 87-92.	1.4	177
21	Contribution of Adipose Triglyceride Lipase and Hormone-sensitive Lipase to Lipolysis in hMADS Adipocytes. Journal of Biological Chemistry, 2009, 284, 18282-18291.	1.6	177
22	Oxytocin Controls Differentiation of Human Mesenchymal Stem Cells and Reverses Osteoporosis. Stem Cells, 2008, 26, 2399-2407.	1.4	170
23	Retinoic acid activation of the ERK pathway is required for embryonic stem cell commitment into the adipocyte lineage. Biochemical Journal, 2002, 361, 621-627.	1.7	163
24	Activin A Plays a Critical Role in Proliferation and Differentiation of Human Adipose Progenitors. Diabetes, 2010, 59, 2513-2521.	0.3	140
25	Growth hormone stimulates c-fos gene expression by means of protein kinase C without increasing inositol lipid turnover Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 1148-1152.	3.3	138
26	Reconstituted Skin from Murine Embryonic Stem Cells. Current Biology, 2003, 13, 849-853.	1.8	137
27	Hedgehog Signaling Alters Adipocyte Maturation of Human Mesenchymal Stem Cells. Stem Cells, 2008, 26, 1037-1046.	1.4	137
28	Compactin Enhances Osteogenesis in Murine Embryonic Stem Cells. Biochemical and Biophysical Research Communications, 2001, 284, 478-484.	1.0	125
29	Enhancement of Myogenic and Muscle Repair Capacities of Human Adipose–derived Stem Cells With Forced Expression of MyoD. Molecular Therapy, 2009, 17, 1064-1072.	3.7	119
30	Retinoic acid activation of the ERK pathway is required for embryonic stem cell commitment into the adipocyte lineage. Biochemical Journal, 2002, 361, 621.	1.7	118
31	Unusual abundance of vertebrate 3-phosphate dehydrogenase pseudogenes. Nature, 1984, 312, 469-471.	13.7	117
32	Characterization of human mesenchymal stem cell secretome at early steps of adipocyte and osteoblast differentiation. BMC Molecular Biology, 2008, 9, 26.	3.0	117
33	Leukemia Inhibitory Factor and Its Receptor Promote Adipocyte Differentiation via the Mitogen-activated Protein Kinase Cascade. Journal of Biological Chemistry, 1999, 274, 24965-24972.	1.6	114
34	Complete nucleotide sequence of the messenger RNA coding for chicken muscle glyceraldehyde-3-phosphate dehydrogenase. Biochemical and Biophysical Research Communications, 1984, 118, 767-773.	1.0	111
35	Paracrine Induction of Stem Cell Renewal by LIF-Deficient Cells: A New ES Cell Regulatory Pathway. Developmental Biology, 1998, 203, 149-162.	0.9	110
36	Developmental Origins of the Adipocyte Lineage: New Insights from Genetics and Genomics Studies. Stem Cell Reviews and Reports, 2012, 8, 55-66.	5.6	101

#	Article	IF	CITATIONS
37	Impaired ossification in mice lacking the transcription factor Sp3. Mechanisms of Development, 2001, 106, 77-83.	1.7	99
38	Characterization of adipocytes derived from fibro/adipogenic progenitors resident in human skeletal muscle. Cell Death and Disease, 2015, 6, e1733-e1733.	2.7	94
39	Comparative transcriptomics of human multipotent stem cells during adipogenesis and osteoblastogenesis. BMC Genomics, 2008, 9, 340.	1.2	91
40	Activation of Extracellular Signal-Regulated Kinases and CREB/ATF-1 Mediate the Expression of CCAAT/Enhancer Binding Proteins β and -Î′ in Preadipocytes. Molecular Endocrinology, 2001, 15, 2037-2049.	3.7	90
41	Activation of Hedgehog Signaling Inhibits Osteoblast Differentiation of Human Mesenchymal Stem Cells. Stem Cells, 2009, 27, 703-713.	1.4	85
42	Characterization of the transcription products of glyceraldehyde 3-phosphate-dehydrogenase gene in HeLa cells. FEBS Journal, 1984, 145, 299-304.	0.2	79
43	Developmental origin of adipocytes: new insights into a pending question. Biology of the Cell, 2008, 100, 563-575.	0.7	79
44	Differentiation of Human Induced Pluripotent Stem Cells into Brown and White Adipocytes: Role of Pax3. Stem Cells, 2014, 32, 1459-1467.	1.4	77
45	Adenosine/A2B Receptor Signaling Ameliorates the Effects of Aging and Counteracts Obesity. Cell Metabolism, 2020, 32, 56-70.e7.	7.2	77
46	Human adipose tissue-derived multipotent stem cells differentiate in vitro and in vivo into osteocyte-like cells. Biochemical and Biophysical Research Communications, 2007, 361, 342-348.	1.0	76
47	Peroxisome Proliferator-activated Receptor γ Regulates Expression of the Anti-lipolytic G-protein-coupled Receptor 81 (GPR81/Gpr81). Journal of Biological Chemistry, 2009, 284, 26385-26393.	1.6	76
48	TGFbeta Family Members Are Key Mediators in the Induction of Myofibroblast Phenotype of Human Adipose Tissue Progenitor Cells by Macrophages. PLoS ONE, 2012, 7, e31274.	1.1	74
49	Coupling of growth arrest and expression of early markers during adipose conversion of preadipocyte cell lines. Biochemical and Biophysical Research Communications, 1986, 137, 903-910.	1.0	70
50	Adipose tissue-derived cells: from physiology to regenerative medicine. Diabetes and Metabolism, 2006, 32, 393-401.	1.4	70
51	Mouse model of skeletal muscle adiposity: A glycerol treatment approach. Biochemical and Biophysical Research Communications, 2010, 396, 767-773.	1.0	70
52	Leptin gene is expressed in rat brown adipose tissue at birth. FASEB Journal, 1997, 11, 382-387.	0.2	68
53	Embryonic Stem Cell-Derived Adipogenesis. Cells Tissues Organs, 1999, 165, 173-180.	1.3	68
54	Human Immunodeficiency Virus Protease Inhibitors Accumulate into Cultured Human Adipocytes and Alter Expression of Adipocytokines. Journal of Biological Chemistry, 2005, 280, 2238-2243.	1.6	68

#	Article	IF	CITATIONS
55	Isolation of a Highly Myogenic CD34-Negative Subset of Human Skeletal Muscle Cells Free of Adipogenic Potential. Stem Cells, 2010, 28, 753-764.	1.4	60
56	IL-1β- and IL-4-polarized macrophages have opposite effects on adipogenesis of intramuscular fibro-adipogenic progenitors in humans. Scientific Reports, 2018, 8, 17005.	1.6	59
57	Expression and regulation of pOb24 and lipoprotein lipase genes during adipose conversion. Journal of Cellular Biochemistry, 1990, 43, 103-110.	1.2	57
58	The FunGenES Database: A Genomics Resource for Mouse Embryonic Stem Cell Differentiation. PLoS ONE, 2009, 4, e6804.	1.1	54
59	Emergence during development of the white-adipocyte cell phenotype is independent of the brown-adipocyte cell phenotype. Biochemical Journal, 2001, 356, 659-664.	1.7	53
60	Essential role of collagens for terminal differentiation of preadipocytes. Biochemical and Biophysical Research Communications, 1992, 187, 1314-1322.	1.0	52
61	Prostacyclin IP receptor up-regulates the early expression of C/EBPβ and C/EBPδ in preadipose cells. Molecular and Cellular Endocrinology, 2000, 160, 149-156.	1.6	52
62	Hedgehog and adipogenesis: Fat and fiction. Biochimie, 2007, 89, 1447-1453.	1.3	52
63	Cloning and regulation of a mRNA specifically expressed in the preadipose state. Journal of Biological Chemistry, 1989, 264, 10119-25.	1.6	52
64	Oxytocin and bone remodelling: Relationships with neuropituitary hormones, bone status and body composition. Joint Bone Spine, 2011, 78, 611-615.	0.8	49
65	Hierarchization of Myogenic and Adipogenic Progenitors Within Human Skeletal Muscle. Stem Cells, 2010, 28, 2182-2194.	1.4	48
66	Inhibition of myogenesis enables adipogenic trans-differentiation in the C2C12 myogenic cell line. FEBS Letters, 2001, 506, 157-162.	1.3	47
67	Effects of GSK3 inhibitors on in vitro expansion and differentiation of human adipose-derived stem cells into adipocytes. BMC Cell Biology, 2008, 9, 11.	3.0	47
68	Inhibition of Hedgehog Signaling Decreases Proliferation and Clonogenicity of Human Mesenchymal Stem Cells. PLoS ONE, 2011, 6, e16798.	1.1	47
69	The primary cilium undergoes dynamic size modifications during adipocyte differentiation of human adipose stem cells. Biochemical and Biophysical Research Communications, 2015, 458, 117-122.	1.0	47
70	Regulation of gene expression by insulin in adipose cells: opposite effects on adipsin and glycerophosphate dehydrogenase genes. Molecular and Cellular Endocrinology, 1989, 63, 199-208.	1.6	45
71	Characterization of brown adipose tissue in the human perirenal depot. Obesity, 2014, 22, 1830-1837.	1.5	45
72	Activation of Extracellular Signal-Regulated Kinases and CREB/ATF-1 Mediate the Expression of CCAAT/Enhancer Binding Proteins and - in Preadipocytes. Molecular Endocrinology, 2001, 15, 2037-2049.	3.7	45

#	Article	IF	CITATIONS
73	Lobular architecture of human adipose tissue defines the niche and fate of progenitor cells. Nature Communications, 2019, 10, 2549.	5.8	44
74	Nucleofection Is a Valuable Transfection Method for Transient and Stable Transgene Expression in Adipose Tissue-Derived Stem Cells. Stem Cells, 2007, 25, 790-797.	1.4	42
75	Brown-like adipose progenitors derived from human induced pluripotent stem cells: Identification of critical pathways governing their adipogenic capacity. Scientific Reports, 2016, 6, 32490.	1.6	42
76	Co-expressed genes prepositioned in spatial neighborhoods stochastically associate with SC35 speckles and RNA polymerase II factories. Cellular and Molecular Life Sciences, 2014, 71, 1741-1759.	2.4	40
77	Extracellular DNA oxidation stimulates activation of NRF2 and reduces the production of ROS in human mesenchymal stem cells. Expert Opinion on Biological Therapy, 2012, 12, S85-S97.	1.4	39
78	Cloning of hOST-PTP: the only example of a protein-tyrosine-phosphatase the function of which has been lost between rodent and human. Biochemical and Biophysical Research Communications, 2004, 321, 259-265.	1.0	37
79	Activins in adipogenesis and obesity. International Journal of Obesity, 2013, 37, 163-166.	1.6	37
80	Lopinavir co-induces insulin resistance and ER stress in human adipocytes. Biochemical and Biophysical Research Communications, 2009, 386, 96-100.	1.0	35
81	Cdkn2a deficiency promotes adipose tissue browning. Molecular Metabolism, 2018, 8, 65-76.	3.0	35
82	Differentiation of embryonic stem cells for pharmacological studies on adipose cells. Pharmacological Research, 2003, 47, 263-268.	3.1	34
83	PPARÎ ³ -dependent and PPARÎ ³ -independent effects on the development of adipose cells from embryonic stem cells. FEBS Letters, 2002, 510, 94-98.	1.3	33
84	Delta-interacting Protein A, a New Inhibitory Partner of CCAAT/Enhancer-binding Protein β, Implicated in Adipocyte Differentiation. Journal of Biological Chemistry, 2005, 280, 11432-11438.	1.6	33
85	Macrophage characteristics of stem cells revealed by transcriptome profiling. Experimental Cell Research, 2006, 312, 3205-3214.	1.2	32
86	Stathmin-like 2, a developmentally-associated neuronal marker, is expressed and modulated during osteogenesis of human mesenchymal stem cells. Biochemical and Biophysical Research Communications, 2008, 374, 64-68.	1.0	31
87	Commitment of Mouse Embryonic Stem Cells to the Adipocyte Lineage Requires Retinoic Acid Receptor Î ² and Active GSK3. Stem Cells and Development, 2009, 18, 457-464.	1.1	31
88	Glycogen Dynamics Drives Lipid Droplet Biogenesis during Brown Adipocyte Differentiation. Cell Reports, 2019, 29, 1410-1418.e6.	2.9	31
89	PBX1: A Novel Stage-Specific Regulator of Adipocyte Development. Stem Cells, 2011, 29, 1837-1848.	1.4	30
90	Comprehensive transcriptome analysis of mouse embryonic stem cell adipogenesis unravels new processes of adipocyte development. Genome Biology, 2010, 11, R80.	13.9	29

#	Article	IF	CITATIONS
91	Biological Effects of Ciliary Neurotrophic Factor on hMADS Adipocytes. Frontiers in Endocrinology, 2019, 10, 768.	1.5	29
92	Emergence during development of the white-adipocyte cell phenotype is independent of the brown-adipocyte cell phenotype. Biochemical Journal, 2001, 356, 659.	1.7	28
93	Expression of cell surface markers during self-renewal and differentiation of human adipose-derived stem cells. Biochemical and Biophysical Research Communications, 2013, 430, 871-875.	1.0	27
94	Enhanced β-adrenergic signalling underlies an age-dependent beneficial metabolic effect of PI3K p110α inactivation in adipose tissue. Nature Communications, 2019, 10, 1546.	5.8	27
95	Wnt lipidation: Roles in trafficking, modulation, and function. Journal of Cellular Physiology, 2019, 234, 8040-8054.	2.0	25
96	Senescent macrophages in the human adipose tissue as a source of inflammaging. GeroScience, 2022, 44, 1941-1960.	2.1	25
97	Identification of <i>PPAP2B</i> as a novel recurrent translocation partner gene of <i>HMGA2</i> in lipomas. Genes Chromosomes and Cancer, 2013, 52, 580-590.	1.5	24
98	Syndecan-1 regulates adipogenesis: new insights in dedifferentiated liposarcoma tumorigenesis. Carcinogenesis, 2015, 36, 32-40.	1.3	24
99	Muscle Regeneration with Intermuscular Adipose Tissue (IMAT) Accumulation Is Modulated by Mechanical Constraints. PLoS ONE, 2015, 10, e0144230.	1.1	24
100	Control of Muscle Fibro-Adipogenic Progenitors by Myogenic Lineage is Altered in Aging and Duchenne Muscular Dystrophy. Cellular Physiology and Biochemistry, 2019, 53, 1029-1045.	1.1	24
101	The size of the primary cilium and acetylated tubulin are modulated during adipocyte differentiation: Analysis of HDAC6 functions in these processes. Biochimie, 2016, 124, 112-123.	1.3	23
102	Expression of the phosphoenolpyruvate carboxykinase gene and its insulin regulation during differentiation of preadipose cell lines. Biochemical and Biophysical Research Communications, 1986, 138, 468-475.	1.0	22
103	Differential effect of HIV protease inhibitors on adipogenesis. Aids, 2003, 17, 2177-2180.	1.0	22
104	Development of Adipocytes from Differentiated ES Cells. Methods in Enzymology, 2003, 365, 268-277.	0.4	22
105	The primary cilium is necessary for the differentiation and the maintenance of human adipose progenitors into myofibroblasts. Scientific Reports, 2017, 7, 15248.	1.6	22
106	Visceral fat inflammation and fat embolism are associated with lung's lipidic hyaline membranes in subjects with COVID-19. International Journal of Obesity, 2022, 46, 1009-1017.	1.6	22
107	Human induced pluripotent stem cells: A new source for brown and white adipocytes. World Journal of Stem Cells, 2014, 6, 467.	1.3	21
108	Characterization of Human Knee and Chin Adipose-Derived Stromal Cells. Stem Cells International, 2015, 2015, 1-11.	1.2	21

#	Article	IF	CITATIONS
109	Breast cancer mammospheres secrete Adrenomedullin to induce lipolysis and browning of adjacent adipocytes. BMC Cancer, 2020, 20, 784.	1.1	21
110	Role of pathways for signal transducers and activators of transcription, and mitogen-activated protein kinase in adipocyte differentiation. Cellular and Molecular Life Sciences, 1999, 56, 538-542.	2.4	20
111	Self-renewal gene tracking to identify tumour-initiating cells associated with metastatic potential. Oncogene, 2012, 31, 2438-2449.	2.6	20
112	Inhibition of the anti-adipogenic Hedgehog signaling pathway by cyclopamine does not trigger adipocyte differentiation. Biochemical and Biophysical Research Communications, 2006, 349, 799-803.	1.0	17
113	Platelet-rich plasma respectively reduces and promotes adipogenic and myofibroblastic differentiation of human adipose-derived stromal cells via the TGFÎ ² signalling pathway. Scientific Reports, 2017, 7, 2954.	1.6	17
114	The Adipocyte: Relationships between Proliferation and Adipose Cell Differentiation. The American Review of Respiratory Disease, 1990, 142, S57-S59.	2.9	15
115	Cultures of Adipose Precursor Cells and Cells of Clonal Lines from Animal White Adipose Tissue. , 2001, 155, 225-237.		14
116	Involvement of BTBD1 in mesenchymal differentiation. Experimental Cell Research, 2007, 313, 2417-2426.	1.2	14
117	Targeting cancer stem cells expressing an embryonic signature with anti-proteases to decrease their tumor potential. Cell Death and Disease, 2013, 4, e706-e706.	2.7	14
118	The complexity of PDGFR signaling: regulation of adipose progenitor maintenance and adipocyte-myofibroblast transition. Stem Cell Investigation, 2017, 4, 28-28.	1.3	14
119	The regulation by growth hormone of lipoprotein lipase gene expression is mediated by c-fos protooncogene. Endocrinology, 1993, 132, 53-60.	1.4	14
120	Inhibition by serum components of the expression of lipoprotein lipase gene upon stimulation by growth hormone. Biochemical and Biophysical Research Communications, 1990, 166, 1118-1125.	1.0	12
121	Resveratrol and HIVâ€protease inhibitors control UCP1 expression through opposite effects on p38 MAPK phosphorylation in human adipocytes. Journal of Cellular Physiology, 2020, 235, 1184-1196.	2.0	12
122	A one step/one pot synthesis of N,N-bis(phosphonomethyl)amino acids and their effects on adipogenic and osteogenic differentiation of human mesenchymal stem cells. Bioorganic and Medicinal Chemistry, 2009, 17, 3388-3393.	1.4	10
123	Distinct Shades of Adipocytes Control the Metabolic Roles of Adipose Tissues: From Their Origins to Their Relevance for Medical Applications. Biomedicines, 2021, 9, 40.	1.4	10
124	Differential effect of HIV protease inhibitors on adipogenesis: intracellular ritonavir is not sufficient to inhibit differentiation. Aids, 2003, 17, 2177-80.	1.0	10
125	Differentiation of Embryonic Stem Cells as a Model to Study Gene Function During the Development of Adipose Cells. , 2002, 185, 107-116.		9
126	The Influence of Auranofin, a Clinically Established Antiarthritic Gold Drug, on Bone Metabolism: Analysis of Its Effects on Human Multipotent Adiposeâ€Derived Stem Cells, Taken as a Model. Chemistry and Biodiversity, 2008, 5, 1513-1520.	1.0	9

#	Article	IF	CITATIONS
127	Aldose Reductases Influence Prostaglandin F2α Levels and Adipocyte Differentiation in Male Mouse and Human Species. Endocrinology, 2015, 156, 1671-1684.	1.4	8
128	Human Pluripotent Stem Cells: A Relevant Model to Identify Pathways Governing Thermogenic Adipocyte Generation. Frontiers in Endocrinology, 2019, 10, 932.	1.5	8
129	Regulators of human adipose-derived stem cell self-renewal. American Journal of Stem Cells, 2012, 1, 42-7.	0.4	8
130	Cell Aggregate Assembly through Microengineering for Functional Tissue Emergence. Cells, 2022, 11, 1394.	1.8	8
131	Differentiation of Mouse Embryonic Stem Cells and of Human Adult Stem Cells into Adipocytes. Current Protocols in Cell Biology, 2007, 34, Unit 23.4.	2.3	7
132	Homeotic and Embryonic Gene Expression in Breast Adipose Tissue and in Adipose Tissues Used as Donor Sites in Plastic Surgery. Plastic and Reconstructive Surgery, 2017, 139, 685e-692e.	0.7	7
133	Impairment of the activin A autocrine loop by lopinavir reduces self-renewal of distinct human adipose progenitors. Scientific Reports, 2017, 7, 2986.	1.6	7
134	Distinct infrastructure of lipid networks in visceral and subcutaneous adipose tissues in overweight humans. American Journal of Clinical Nutrition, 2020, 112, 979-990.	2.2	7
135	Transplantation of fat tissues and iPSC-derived energy expenditure adipocytes to counteract obesity-driven metabolic disorders: Current strategies and future perspectives. Reviews in Endocrine and Metabolic Disorders, 2021, , 1.	2.6	7
136	Differentiation of Brown Adipocyte Progenitors Derived from Human Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2018, 1773, 31-39.	0.4	6
137	A method for the gross analysis of global protein acylation by gas–liquid chromatography. IUBMB Life, 2019, 71, 340-346.	1.5	6
138	Use of Differentiating Embryonic Stem Cells in Pharmacological Studies. , 2006, 329, 341-352.		5
139	IER3 Promotes Expansion of Adipose Progenitor Cells in Response to Changes in Distinct Microenvironmental Effectors. Stem Cells, 2015, 33, 2564-2573.	1.4	5
140	Autologous Fat Grafts: Can We Match the Donor Fat Site and the Host Environment for Better Postoperative Outcomes and Safety?. Current Surgery Reports, 2017, 5, 1.	0.4	5
141	Brown-Like Adipocyte Progenitors Derived from Human iPS Cells: A New Tool for Anti-obesity Drug Discovery and Cell-Based Therapy?. Handbook of Experimental Pharmacology, 2018, 251, 97-105.	0.9	5
142	Adipocyte Precursors: Developmental Origins, Self-Renewal, and Plasticity. , 2012, , 1-16.		4
143	The Primary Cilium of Adipose Progenitors Is Necessary for Their Differentiation into Cancer-Associated Fibroblasts that Promote Migration of Breast Cancer Cells In Vitro. Cells, 2020, 9, 2251.	1.8	4
144	The FibromiR miR-214-3p Is Upregulated in Duchenne Muscular Dystrophy and Promotes Differentiation of Human Fibro-Adipogenic Muscle Progenitors. Cells, 2021, 10, 1832.	1.8	4

#	Article	IF	CITATIONS
145	A Simple Method for Generating, Clearing, and Imaging Pre-vascularized 3D Adipospheres Derived from Human iPS Cells. Methods in Molecular Biology, 2021, , 495-507.	0.4	4
146	Critical Steps and Hormonal Control of Adipose Cell Differentiation. Pediatric and Adolescent Medicine, 1992, 2, 115-124.	0.4	3
147	The mRNA of protein disulfide isomerase and its homologue the thyroid hormone binding protein is strongly expressed in adipose tissue. Molecular and Cellular Endocrinology, 1990, 73, 105-110.	1.6	3
148	Development of Adipose Cells. , 2013, , 3-16.		2
149	The Generation and the Manipulation of Human Multipotent Adipose-Derived Stem Cells. Methods in Molecular Biology, 2011, 702, 419-427.	0.4	1
150	Ocytocine et remodelage osseuxÂ: relation entre hormones pituitaires, statut osseux et composition corporelle. Revue Du Rhumatisme (Edition Francaise), 2011, 78, 453-458.	0.0	0
151	Developmental origins of adipocytes: What we learn from human pluripotent stem cells. , 2022, , 11-21.		0
152	Invalidation génique de PPARγ : malgré la létalité, des révélations suprenantes Medecine/Sciences, 2000, 16, 253.	' 0.0	0
153	Differentiation of Embryonic Stem Cells into Adipose Cells. , 2004, , 329-334.		0
154	Fat Cell Progenitors: Origins and Plasticity. Research and Perspectives in Endocrine Interactions, 2010, , 77-87.	0.2	0